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SUMMARY

Four approaches to estimating a regression model for relative survival using the method of maximum
likelihood are described and compared. The underlying model is an additive hazards model where the
total hazard is written as the sum of the known baseline hazard and the excess hazard associated with
a diagnosis of cancer. The excess hazards are assumed to be constant within pre-speci�ed bands of
follow-up. The likelihood can be maximized directly or in the framework of generalized linear models.
Minor di�erences exist due to, for example, the way the data are presented (individual, aggregated or
grouped), and in some assumptions (e.g. distributional assumptions). The four approaches are applied
to two real data sets and produce very similar estimates even when the assumption of proportional
excess hazards is violated. The choice of approach to use in practice can, therefore, be guided by ease
of use and availability of software. We recommend using a generalized linear model with a Poisson
error structure based on collapsed data using exact survival times. The model can be estimated in any
software package that estimates GLMs with user-de�ned link functions (including SAS, Stata, S-plus,
and R) and utilizes the theory of generalized linear models for assessing goodness-of-�t and studying
regression diagnostics. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A common aim when studying cancer patient survival is the estimation of net survival, a
measure of patient survival corrected for the e�ect of other causes of death. Net survival is
a hypothetical quantity which can be estimated using, for example, cause-speci�c survival or
relative survival. In studies of cancer patient survival conducted in a clinical setting, whether
they be randomized trials [1] or observational studies [2], it is standard to use cause-speci�c
survival to estimate net survival. Estimates of cause-speci�c survival are obtained by con-
sidering the survival times of patients who died of causes other than the cancer of interest
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to be censored and applying the usual actuarial or product-limit estimator. The de�nition of
net survival is not consistent in the statistical and epidemiological literature. Some authors,
for example, use the term net survival as a synonym for cause-speci�c survival. Our use of
the term is consistent with the use of the term ‘net probability’ in the theory of competing
risks [3, 4].
Our focus is the estimation and modelling of net survival in population-based studies of

cancer survival, that is, studies based on data collected by population-based cancer registries.
Although the basic methodology is similar to that used in clinical studies of cancer patient
survival the two types of studies are, in many ways, quite di�erent. The aim of a randomized
clinical trial is usually to evaluate the e�ect of an intervention (including treatment) on patient
survival while controlling for other factors which may a�ect patient survival. It is not essential
that the patients under study be representative of any population or population group, although
it is essential that the treatment groups being compared are comparable in all aspects other than
the intervention, which is best achieved by randomization. The aim of population-based studies
of cancer survival, on the other hand, is to describe patient survival in demographically de�ned
groups in the population in such a way that the results are representative of the population.
The population-based design is vital from a public health perspective, but such studies are also
useful from a clinical perspective. However, a randomized clinical trial is clearly preferable if
the primary interest is assessing treatment e�cacy since it is essentially impossible to control
for all of the factors associated with treatment allocation in an observational setting.
In general, population-based studies involve a larger number of patients who are followed

for a longer period, although less accurately with respect to clinical outcomes such as cause of
death, relapses, remissions, side e�ects, etc. As such, use of cause-speci�c survival methods
can be problematic since information on cause of death is often unavailable or unreliable [5].
It can happen, for example, that when a colon cancer metastasises to the liver and causes
death that the cause of death on the death certi�cate is erroneously recorded as cancer of the
liver. In a cause-speci�c survival analysis of patients diagnosed with colon cancer, this will be
classi�ed as a ‘death due to other causes’ and the survival time will be considered censored
at the time of death. Even if accurate information on cause of death is available, it is often
di�cult to determine whether or not a death should be classi�ed as being due to the cancer of
interest. For example, it is not obvious how one should classify deaths due to suicide or the
secondary e�ects of treatment. It is not possible in cause-speci�c survival analysis to classify
a death as being partially due to cancer; the only two alternatives are to classify a death as
being entirely due to the cancer of interest or entirely due to other causes.
Because of these di�culties, it is common to use relative survival as a means of estimating

net survival in population-based cancer survival studies. Relative survival is generally esti-
mated from life tables as the ratio of the observed survival of the patients (where all deaths
are considered events) to the expected survival of a comparable group from the general pop-
ulation, matched to the patients with respect to the main factors a�ecting patient survival and
assumed to be practically free of the cancer of interest [6]. It is usual to estimate expected
survival from nationwide population life tables strati�ed by age, sex, calendar time and where
applicable, race [7]. Although these tables include the e�ect of deaths due to the cancer being
studied, this does not, in practice, a�ect the estimated survival proportions [6,8, pp. 235–
236]. Mortality for a speci�c site generally constitutes only a small fraction of total mortality
and correcting for this mortality has a negligible e�ect on estimates of expected survival,
even among common cancers such as prostate cancer [9]. The major advantages of relative
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survival are that information on cause of death is not required and that it provides a measure
of the excess mortality experienced by patients diagnosed with cancer, irrespective of whether
the excess mortality is directly or indirectly attributable to the cancer. Relative survival is
now accepted as the method of choice for population-based cancer survival. Population-based
cancer registries almost exclusively report relative survival as the measure of patient survival,
prominent recent examples being reports from the U.S.A. [10], England and Wales [11] and
the EUROCARE-2 [12] study of 17 European countries.
When modelling relative survival, the hazard function at time t since diagnosis for persons

diagnosed with cancer (with covariate vector z) is modelled as the sum of the expected hazard,
�∗(t; z), and the excess hazard due to a diagnosis of cancer, �(t; z). That is

�(t; z)= �∗(t; z) + �(t; z) (1)

The expected hazard (sometimes called the baseline hazard) is denoted with an asterisk to
indicate that it is estimated from external data (general-population mortality rates) as opposed
to, for example, the baseline hazard in a Cox proportional hazards model [13], an arbitrary
function which is not estimated. Some authors prefer to write the expected hazard as �∗(t; z1),
where z1 is a subvector of z, in order to indicate that the expected hazard is generally assumed
to depend only on a subset of the covariates available (typically age, sex and period). The
expected hazard does not depend, for example, on tumour-speci�c covariates such as histology
or stage. We will write, for simplicity, that the expected hazard is a function of z, even though
it does not vary over all elements of z.
The model is known as an additive hazards model or a relative survival model, since it

can be written as

S(t; z)= S∗(t; z)× r(t; z) (2)

where S(t; z), S∗(t; z) and r(t; z) represent cumulative observed, expected and relative sur-
vival. For population-based cancer survival data, such models are generally biologically more
plausible and provide a better �t to the data than multiplicative models [14–17]. The haz-
ards are assumed to be constant within pre-speci�ed subintervals (bands) of follow-up time
(i.e. piecewise constant hazards). These intervals are typically of length 1 year, although it is
common to use shorter intervals early in the follow up (e.g. during the �rst year) and longer
intervals later in the follow-up (e.g. after 10 years). A set of indicator variables is constructed
(one indicator variable for each interval excluding the reference interval) and incorporated
into the covariate vector. We will use x to denote the covariate vector that contains indicator
variables for these bands of follow-up time in addition to the other covariates z. Our primary
interest is in the excess hazard component, �, which is assumed to be a multiplicative function
of the covariates, written as exp(x�). The basic relative survival model is therefore written
as

�(x)= �∗(x) + exp(x�) (3)

Parameters representing the e�ect in each follow-up interval are estimated in the same way
as parameters representing the e�ect of, for example, age, sex or histology. Implicit in
equation (3) is the assumption that the excess hazards for any two patient subgroups are
proportional over follow-up time. Non-proportional excess hazards can, however, be incorpo-
rated by including time by covariate interaction terms in the model.
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The focus of this paper is on methods for estimating the model based on patient data
and a �le of general-population mortality rates (or probabilities of death). The exponentiated
parameter estimates have an interpretation as excess hazard ratios, sometimes known as relative
excess risks [18]. An excess hazard ratio of, for example, 1.5 for males compared to females
implies that the excess hazard associated with a diagnosis of cancer is 50 per cent, higher for
males than females.
Two approaches to estimating the model have previously been described by Hakulinen and

Tenkanen [15] and Est�eve et al. [16]. Hakulinen and Tenkanen estimate the model based
on grouped data in the framework of generalized linear models (GLMs) using a binomial
assumption for the number of observed deaths. Est�eve et al. use a full-likelihood approach
based on individual level data (exact survival times). We will show, by using an approach
analogous to that used in the analysis of epidemiological cohort studies, that the likelihood can
be written in a way simpler than that used by Est�eve et al. thereby enabling estimation using
a full-likelihood approach with standard statistical software. We will also describe a new ap-
proach whereby the model is estimated in the framework of generalized linear models using a
Poisson assumption for the number of observed deaths. This approach can be applied to either
aggregated data or individual level data (exact survival times). When applied to individual
level data using information on exact survival times, the estimates from the Poisson GLM are
identical to those obtained using the full-likelihood approach. We apply the four approaches
to estimating the model to two data sets kindly provided by the Finnish Cancer Registry.

2. THE EST�EVE ET AL. FULL-LIKELIHOOD APPROACH

Est�eve et al. [16] described a method for estimating the model in equation (3) directly from
individual-level data using a full-maximum-likelihood approach. Although they use a slightly
di�erent parameterization in their paper, the underlying model is identical to equation (3).
The likelihood function is

L=
n∏
i=1
exp

(
−
∫ ti

0
�(s) ds

)
[�(ti)]di (4)

where ti is the survival time and di the failure indicator variable (1 if ti is the time of death;
0 if the survival time is censored at ti) for each of the i=1; : : : ; n individuals.
Writing the total hazard as the sum of the expected hazard and the excess hazard, the

log-likelihood function is

l(�)=−
n∑
i=1

∫ ti

0
�∗(s) ds−

n∑
i=1

∫ ti

0
�(s) ds+

n∑
i=1
di ln[�∗(ti) + �(ti)] (5)

Although the model is speci�ed in continuous time, it is assumed, as with all approaches
described in this paper, that the hazard is constant within pre-speci�ed bands of time and the
excess hazard �(t) is written as exp(x�). The �rst component of the log likelihood does not
depend on � leading to the attractive feature from a computational viewpoint that, for each
individual, only one value needs to be read from the excess hazards �le, the expected hazard
at ti.
Their approach is implemented in special-purpose software which runs under DOS [19]. A

major problem in applying the Est�eve et al. approach in practice is that it is not possible,
using the accompanying software, to model time-varying covariates. This means that there is
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no way to control for non-proportional excess hazards, which are very common with cancer
registry data. It should be noted that this problem is due to limitations in the associated
software rather than the theory underlying the model. Regression diagnostics are not available
for the Est�eve et al. model and there is no way of assessing goodness-of-�t (due to the lack
of underlying theory rather than limitations in the associated software).

3. FULL-LIKELIHOOD BASED ON MULTIPLE OBSERVATIONS PER SUBJECT

In the Est�eve et al. approach, as with all approaches described in this paper, the excess
hazard is assumed to be constant within bands of follow-up time. Estimation of the model is
simpli�ed if each observation is split into separate observations for each band of follow-up.
Rather than evaluating the log-likelihood for each subject and summing over subjects (the
Est�eve et al. approach) we evaluate the log-likelihood for each subject band. Consider, for
example, an individual who dies 4:5 years after diagnosis (ti=4:5; di=1). This observation
is split into �ve subject-band observations, for which the time at risk is y=1 year and the
censoring indicator d=0 for the �rst four whereas y=0:5 and d=1 for the �fth subject-band
observation.
Each of the subject-band observations inherits the covariates of the original observation

(age at diagnosis, sex, stage, etc.). Estimates of �∗(x) for each subject band are made using
external data (general-population mortality rates). Each subject-band observation, indexed by
j, represents the survival experience of an individual patient during a pre-speci�ed band
of follow-up and includes variables representing the time at risk (yj), death indicator (dj),
expected hazard (�∗j ) and indicator variables for each of the components of � (including
follow-up band).
The log-likelihood function, expressed in terms of the J subject-band observations, is

l(�)=
J∑
j=1
[dj ln[�∗(xj) + exp(xj�)]− yj exp(xj�)] (6)

This log-likelihood is obtained in an identical fashion to equation (5). The �rst component
in equation (5) does not depend on � and so can be omitted. Since the excess hazard � is
assumed to be constant in each interval, the integral in the second component of equation (5)
evaluates to the interval length (yj) multiplied by the excess hazard (written as exp(xj�)).
The model can be estimated using procedures available in standard statistical software pack-
ages for maximum-likelihood estimation, such as the Stata m1 command or SAS PROC NLP
(part of SAS=OR). It is a simple matter to model non-proportional excess hazards by esti-
mating appropriate time by covariate interaction terms. Regression diagnostics are, however,
not available and there is no way of assessing goodness-of-�t (due to the lack of underlying
theory).

4. A GENERALIZED LINEAR MODEL WHERE THE OBSERVED NUMBER OF
DEATHS IS ASSUMED POISSON

The relative survival model (equation (3)) assumes piecewise constant hazards which implies
a Poisson process for the number of deaths in each interval; see Reference [20, p. 409] or
Reference [21, Section 4.2]. The resulting log likelihood (equation (6)) is identical to the
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log-likelihood for grouped Poisson data with intensity �∗(x) + exp(x�) [21, p. 185] except
we omitted the term −yj�∗(xj) since it did not depend on �.
This implies that the relative survival model can also be estimated in the framework of

generalized linear models using a Poisson assumption for the observed number of deaths. If
the model is estimated from subject-band observations, the estimates will be identical to those
obtained using the full-likelihood approach (Section 3) since we maximize the same likelihood
based on the same data. We can also, however, estimate the model based on collapsed or
grouped data, in which case the estimates di�er slightly.
We assume that the number of deaths, dj, for observation j can be described by a Poisson

distribution, dj ∼Poisson(�j) where �j= �jyj and yj is person-time at risk for the observation.
The observations can represent either life table intervals (in which case there can be multiple
deaths per observation), individual patients or subject bands (as in Section 3).
Equation (3) is then written as

�j=yj=d∗j =yj + exp(x�) (7)

which can be written as

ln(�j − d∗j )= ln(yj) + x� (8)

where d∗j is the expected number of deaths (due to causes other than the cancer of interest and
estimated from general population mortality rates). This implies a generalized linear model
with outcome dj, Poisson error structure, link ln(�j−d∗j ), and o�set ln(yj). Breslow and Day
[21, pp. 173–176] discuss similar models with application to an occupational cohort study.
Because of the non-standard link function, �tting the model requires software which supports
the estimation of generalized linear models with the so-called user-de�ned link functions.
Most general purpose statistical software packages support this feature, including SAS (from
version 6.10), Stata (from version 7), S-plus, R and GLIM.
Since the data are usually cross-classi�ed and non-sparse, evaluation of model goodness-

of-�t can be made using the deviance or Pearson �2 statistics [22] although most software
packages require the data to be collapsed such that there is only one observation for each
unique combination of covariates. The usual regression diagnostics (residuals, in�uence statis-
tics) applicable for generalized linear models are also available. It should be noted that we
introduced the assumption that dj ∼Poisson(�j) in order to use the GLM approach, although
this is not strictly necessary—we simply make use of the fact that the likelihood in equa-
tion (6) is identical to a Poisson likelihood.

4.1. Estimation based on collapsed data (using exact survival times)

The model can be estimated directly from subject-band observations or the subject-band ob-
servations can be collapsed to give one observation for each covariate pattern (d; d∗ and y are
summed within each covariate pattern). Estimating a standard Poisson regression model (with
logarithmic link and o�set ln(yj)) gives identical estimates for both individual and collapsed
data. Estimating equation (8) based on collapsed data, however, leads to slightly di�erent es-
timates to those obtained from subject-band observations since d∗ varies within each covariate
pattern (i.e. combination of follow-up interval, sex, period, age group, etc.).
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4.2. Estimation based on grouped data

Grouped survival data occur when information is available only on the number of events in a
time interval rather than exact times to event for each individual. Grouped survival data arise
when, for example, patients are contacted at �xed intervals after the date of diagnosis (e.g.
annually) in order to ascertain vital status or when more accurate information is available
on survival times but the data are grouped using actuarial methods. Many methods for the
analysis of time-to-event data assume that survival time is measured on a continuous scale
although, in practice, survival time is always measured on a discrete scale.
Survival time is calculated from the date of diagnosis of cancer to the date of death. The

date of diagnosis is not a well-de�ned quantity since diagnosis of cancer is generally a process
which commences with a suspicion and becomes more de�nitive through X-rays, endoscopies
and �nally, microscopic investigation [23]. For this reason many registries, including the
Finnish Cancer Registry who provided the data studied in this paper, record survival time in
completed months rather than completed days. For cancer registry data, it is usual to assume
that survival times recorded in completed days or completed months may be analysed using
methods developed for continuous time, but discrete time methods should be used when the
data are more heavily grouped.
In the analysis of cancer patient survival, it is common to estimate relative survival using

actuarial (life-table) methods. The patients are grouped into K strata, indexed by k, with
one stratum for each combination of relevant predictor variables (age, sex, calendar period
of diagnosis, stage, etc.), and a life-table, with intervals indexed by i, estimated for each
stratum.
We will use the following notation for quantities derived from life tables:

nki number of individuals alive at the start of the ith life-table interval,
dki number of deaths during the ith interval,
wki number censored during the ith interval,
l′ki e�ective number at risk (l

′
ki= nki − wki=2),

yki total person-time at risk during the ith interval,
p∗
ki estimated interval-speci�c expected survival proportion (estimated from general popu-
lation mortality rates),

d∗ki expected number of deaths (due to causes other than cancer and estimated from general
population mortality rates) for the ith interval,

�∗ki expected hazard (due to causes other than cancer and estimated from general population
mortality rates) for the ith interval.

When estimating the relative survival model (equation (3)) from grouped data, the ob-
servations are the life-table intervals. Ideally, person-time at risk should be estimated from
information on exact survival times if they are available. If, however, only grouped survival
data are available then person-time at risk must be approximated. If grouped survival data
are available based on annual life-table intervals, then an approximation for the number of
person-years at risk during an interval is yki= nki − (wki + dki)=2. This approximation implies
an assumption that deaths and censorings are evenly distributed throughout an interval, an as-
sumption which is generally valid except sometimes for the �rst interval, where a correction
factor can be applied, if necessary, or shorter intervals can be used at the start of follow-up.
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The expected number of deaths during an interval can be approximated by either

d∗ki=(nki − wki=2)(1− p∗
ki) (9)

or

d∗ki=− ln(p∗
ki=�ki)yki (10)

where �ki is the length of the interval, depending on whether we choose to work with
proportions (equation (9)) or rates (equation (10)).
The distinction between what we have called collapsed data and grouped data is that, in

the collapsed data, y and d∗ are based on the exact time at risk whereas these quantities
are approximated for grouped data. The collapsed data set will contain the same number of
observations as the grouped data set with identical values of d in each. The primary reason
for collapsing the data is that residuals and goodness-of-�t statistics are not appropriate when
estimated from subject-band (or individual level) observations.

5. THE HAKULINEN–TENKANEN APPROACH FOR GROUPED DATA

Hakulinen and Tenkanen [15] estimate the relative survival model from grouped survival data
using an assumption that the number of deaths in each life-table interval can be modelled
using a binomial distribution. The model is estimated in the framework of generalized linear
models [22] where the outcome is l′ki−dki (the number of patients surviving the interval), the
error structure binomial with denominator l′ki and the link function complementary log–log
combined with a division by p∗

ki. That is

ln
[
− ln pki

p∗
ki

]
=x� (11)

As with the approaches described in Section 4, the model can be estimated using any software
which supports the estimation of generalized linear models with user-de�ned link functions.
The binomial assumption has been criticized [16] since the patients at risk at the start of each
interval are known to be heterogeneous so will not have the same probability of surviving
to the end of the interval. This problem can be minimized, however, by ensuring that the
life-table estimates are strati�ed by, for example, age and stage. If considered necessary,
adjustment can be made for extra-binomial variation by scaling the covariance matrix. The
two approaches based on grouped data will give very similar results since the log-likelihoods
are similar. The binomial log-likelihood for a life-table interval [24, p. 23] is

dki log(1− e−�ki) + (l′ki − dki) log(e−�ki) (12)

which, for small �ki, can be written as

dki log(�ki)− (l′ki − dki)�ki (13)

The Poisson log-likelihood, where person-time is approximated as yki= l′ki − 0:5dki, is
dki log(�ki)− (l′ki − 0:5dki)�ki (14)

which will be similar to the binomial log-likelihood when �ki is small.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:51–64



REGRESSION MODELS FOR RELATIVE SURVIVAL 59

6. EMPIRICAL COMPARISON OF THE MODELS

In this section, four approaches to estimating the relative survival model (equation (3)) are
applied to two data sets kindly supplied by the Finnish Cancer Registry. The �rst data set
consists of 5318 patients diagnosed with localized skin melanoma and the second consists
of 6274 patients diagnosed with localized colon carcinoma. The data sets contain all cases
diagnosed in Finland (population 5.1 million) during 1975–1994 with follow-up to the end of
1995 [25]. The localized skin melanoma data were chosen since this was one of the few cancer
sites for which a main-e�ects model provides a reasonable �t to the data (i.e. an assumption
of proportional excess hazards is appropriate). In general, excess hazards are almost always
non-proportional with respect to stage and, even within each stratum of stage, excess hazards
are usually non-proportional with respect to age. The localized colon carcinoma data provide
a typical example of data exhibiting non-proportional excess hazards with respect to age, an
issue which is discussed further in Section 6.1.
The following approaches to estimating the model were used:

(1) Grouped survival times, GLM with a binomial error structure (Section 5);
(2) grouped survival times, GLM with a Poisson error structure (Section 4.2);
(3) exact survival times, individual subject-band observations (estimates are identical using

either the full-likelihood approach (Section 3) or a GLM with a Poisson error structure
(Section 4)); and

(4) exact survival times, collapsed data, GLM with a Poisson error structure (Section 4.1).

The models were estimated for the �rst 5 years of follow-up only. That is, patients alive on
the �fth anniversary following diagnosis were considered censored on that date. This was done
since the assumption of proportional excess hazards is not generally appropriate for longer
follow-up periods and the majority of the excess deaths occur in the �rst 5 years follow-
ing diagnosis. Follow-up time was strati�ed into annual intervals. Estimates are presented in
Table I as estimated excess hazard ratios compared to the appropriate reference category (�rst
year of follow-up, males, period of diagnosis 1975–1984, ages 0–44 years at diagnosis).
One can see from the estimated excess hazard ratios in Table I, for example, that excess

mortality following a diagnosis of cancer has decreased with calendar period of diagnosis
(survival has improved) for both cohorts. The estimated relative excess risk of 0.63 for calen-
dar period indicates that patients diagnosed with localized skin melanoma during 1985–1994
experienced only 63 per cent of the excess mortality experienced by those diagnosed 1975–
1984. The di�erence is statistically signi�cant (a Wald test statistic is ln(0:63)=0:098=−4:7).
In practice, tests of statistical signi�cance are best performed using the likelihood ratio crite-
rion. It is not surprising that the estimated parameters and standard errors presented in Table I
are similar for each of the four approaches, since each estimates the same underlying model
(equation (3)). All approaches assume that the excess hazard is constant within each follow-
up band and all require the widths of the bands to be pre-speci�ed. As expected, the estimates
are slightly di�erent when grouped, rather than exact, survival times are used (models (1)
and (2)). The primary di�erence between the two models for grouped survival data is the
assumed error distribution (binomial or Poisson).
Since approaches (1), (2) and (4) estimate the model based on non-sparse cross-classi�ed

data in the framework of generalized linear models it is possible to use the deviance statistic
as a measure of goodness-of-�t. Under the assumption that the model provides an adequate
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Table I. Estimated excess hazard ratios and standard errors of the log excess hazard ratio
for four approaches to estimating the relative survival model for two data sets, localized
skin melanoma and localized colon carcinoma diagnosed in Finland during 1975–1994 with

follow-up to the end of 1995.

Skin melanoma Colon carcinoma
Grouped Exact times Grouped Exact times

Bin. Pol. Ind. Coll. Bin. Pol. Ind. Coll.
(1) (2) (3) (4) (1) (2) (3) (4)

Deviance 76 73 76 120 113 131
Residual df 70 70 70 70 70 70

Estimated excess hazard ratios (i.e. exp (�)))
Follow-up 2=1 6.69 6.64 6.79 6.76 0.84 0.85 0.83 0.80
Follow-up 3=1 7.11 7.07 7.13 7.24 0.65 0.66 0.68 0.62
Follow-up 4=1 5.33 5.30 5.36 5.42 0.52 0.53 0.54 0.50
Follow-up 5=1 4.59 4.56 4.73 4.66 0.45 0.46 0.46 0.43
Female=Male 0.56 0.57 0.55 0.56 0.96 0.98 0.95 0.96
Year 85–94=75–84 0.63 0.63 0.63 0.63 0.73 0.73 0.73 0.73
Age 45–59=0–44 1.38 1.38 1.38 1.38 0.86 0.86 0.87 0.86
Age 60–74=0–44 1.90 1.86 1.92 1.89 1.07 1.05 1.06 1.07
Age 75 + =0–44 3.19 2.99 3.14 3.24 1.37 1.29 1.34 1.44

SEs of the log hazard ratio (i.e. of the parameter estimates)
Follow-up 2=1 0.298 0.301 0.297 0.301 0.093 0.095 0.094 0.092
Follow-up 3=1 0.299 0.301 0.298 0.301 0.109 0.111 0.108 0.108
Follow-up 4=1 0.307 0.310 0.306 0.309 0.131 0.133 0.128 0.130
Follow-up 5=1 0.315 0.317 0.313 0.317 0.151 0.153 0.150 0.150
Female=Male 0.097 0.098 0.097 0.097 0.077 0.079 0.077 0.076
Year 85–94=75–84 0.098 0.099 0.097 0.098 0.075 0.076 0.075 0.074
Age 45–59=0–44 0.125 0.125 0.125 0.125 0.156 0.157 0.156 0.157
Age 60–74=0–44 0.128 0.129 0.127 0.128 0.143 0.144 0.143 0.143
Age 75 + =0–44 0.173 0.181 0.173 0.172 0.151 0.153 0.151 0.150

�t to the data, the deviance will follow a �2 distribution with degrees of freedom equal to the
number of residual degrees of freedom of the model (number of observations minus number
of estimated parameters) [22].
There is no evidence of lack-of-�t for the model �tted to the skin melanoma data since the

deviance is similar in magnitude to the residual degrees of freedom. A complete assessment of
model �t should also include a study of residuals and in�uence statistics, which are not shown
here although they show no evidence of lack-of-�t. There is, however, clear evidence of a
lack-of-�t for the model �tted to the localized colon data. The deviance is 113 on 70 residual
degrees of freedom (model (2) in Table I) whereas the 99th percentile of a �270 distribution is
100. This issue is discussed further in the following section. It is worth noting, however, that
all approaches to �tting the model produce similar estimates even when the model is poorly
speci�ed.
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Table II. Estimated excess hazard ratios for age esti-
mated separately for each annual follow-up interval by
including an age by follow-up interaction in model (5),
localized colon carcinoma diagnosed in Finland during

1975–1994 with follow-up to the end of 1995.

Follow-up interval

Age 1 2 3 4 5

0–44 1.00 1.00 1.00 1.00 1.00
45–59 1.10 0.59 1.22 0.72 0.97
60–74 1.66 0.89 1.02 0.85 0.97
75+ 3.31 0.83 0.63 0.52 0.01

6.1. Non-proportional excess hazards

For a full main e�ects model �tted to cross-classi�ed categorical data, possible explanations
for lack-of-�t are an incorrectly speci�ed functional form, omission of important unmea-
sured covariates (i.e. overdispersion) or absence of important interaction terms. It is generally
thought that an additive hazards model is most appropriate for population-based cancer sur-
vival analysis although, where lack-of-�t is evident, we may wish to consider a multiplicative
model. Overdispersion could occur if, for example, survival depended heavily on some patient
characteristic or tumour characteristic (e.g. stage or histology) for which information was not
available to us. We have strati�ed by stage so the most likely explanation for the lack-of-�t is
that one or more interaction terms are required. Interactions are required when one or more of
the excess hazard ratios vary according to the level of one of the other covariates (i.e. there
is e�ect modi�cation). It is possible, for example, that the excess hazard ratios for age di�er
according to calendar period of diagnosis, but experience has shown that the most common
interaction is between age and follow-up time (for models �tted to data for all stages, the
most common interaction is between stage and follow-up time).
An interaction between age and follow-up time means that the excess hazard ratios for

age di�er according to follow-up time. In other words, an assumption of proportional excess
hazards is not appropriate for age. This assumption of proportional excess hazards is rarely
justi�ed for stage or age for population-based cancer registry data. Among the group of
patients with the worst prognosis, such as those with metastases at diagnosis or those who are
elderly at diagnosis, it is common for a large proportion to die very soon after diagnosis (e.g.
during the �rst year), but those who survive the �rst year have comparably good survival.
Including an age by follow-up interaction term involves the estimation of 12 additional

parameters which are, as a group, highly statistically signi�cant using the likelihood ratio
test (G2 = 59 for model (1) and G2 = 55 for model (2) on 12 df). Once the interaction
term is included there is no longer evidence of lack-of-�t; the deviance is 61 on 58 residual
degrees of freedom for model (1) and 58 on 58 residual degrees of freedom for model (2).
The parameter estimates associated with sex and calendar period change very little on �tting
the interaction term. The estimated excess hazard ratios for age, however, change markedly
(Table II). The estimated excess hazard ratio for individuals aged 75+ at diagnosis compared
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to patients aged 0–44 is signi�cantly greater than one during the �rst interval but then less
than one during all subsequent intervals. The �tted main e�ects model erroneously assumes
that the excess hazard ratio is identical (e.g. 1.34 for model (4)) for each of the �ve follow-up
intervals (Table I). We have tested the hypothesis of proportional excess hazards against a
general alternative hypothesis. A test against a more speci�c alternative hypothesis, such as a
hazard ratio which changes monotonically with time, would be more powerful if the departure
from proportional excess hazards was of the form speci�ed by the alternative hypothesis.
Inference based on the model without an interaction term may give the erroneous impression

that there is no strong association between age at diagnosis and excess mortality. The truth is
that patients aged 75 years or more at diagnosis experience considerably higher excess mor-
tality during the �rst year following diagnosis; an estimated 3.3 times higher excess mortality
than patients aged 0–44. After the �rst year, however, the excess mortality experienced by
the elderly patients is no worse than that experienced by patients of other ages who survive a
comparable time. This e�ect may be a result of the elderly patients being adversely a�ected
by the treatment (or the combined e�ects of the disease and its treatment) to a greater extent
than the younger patients. Among the elderly patients who are su�ciently strong to survive
the initial e�ects of the disease and its treatment, however, the prognosis is comparatively
good.
Bolard et al. [17] �tted similar models for 2075 colon cancer patients diagnosed in the

Côte-d’Or administrative region of France and found evidence of non-proportional excess
hazards by stage, age and period of diagnosis. They observed a very similar pattern of excess
hazard ratios for age to that shown in Table II.

7. DISCUSSION

Each of the four approaches for estimating the relative survival model described in this paper
produce very similar estimates, which is not surprising since they estimate the same underlying
model using similar methods. The full-likelihood approach described by Est�eve et al. was
hailed as being theoretically superior to the approach described earlier by Hakulinen and
Tenkanen since it utilizes information on exact survival times and does not rely on a binomial
assumption. Although this is indisputably true, the advantages are minor and the di�erences in
the resulting estimates are small. The choice of approach to use in practice depends not only
on theoretical considerations but also on how easy the approach is to apply using available
software. A major disadvantage of the Est�eve et al. approach was that it was not previously
possible, using the available software package [19], to assess goodness-of-�t, study regression
diagnostics, or, most importantly, estimate interaction terms which are required to control for
non-proportional excess hazards.
We have showed that by writing the likelihood in terms of subject bands, the model can

be easily estimated using a full-likelihood approach in standard software such as SAS, Stata
or S-plus and time by covariate interaction terms can be estimated to model non-proportional
excess hazards. Regression diagnostics or goodness-of-�t tests are not, however, available
since the underlying theory has not been developed. A preferable approach, however, is to
estimate the model in the framework of generalized linear models. This retains all of the
advantages of the full-likelihood approach (the estimates are, in fact, identical) but brings
the additional advantage that regression diagnostics and goodness-of-�t tests are available
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(although only when the data are collapsed or grouped). Interaction terms, including time
by covariate interaction terms, can be estimated in each of the approaches described in
this paper.
Of all the approaches, we recommend the generalized linear model based on collapsed data

using exact survival times and a Poisson assumption (approach 4) since one can utilize the
theory of generalized linear models for assessing goodness-of-�t and studying regression di-
agnostics. Implementation of this approach is more user friendly in some software packages
than implementation of the full-likelihood approach. For example, categorical predictors can
be modelled in SAS PROC GENMOD without requiring the user to create dummy variables
explicitly (as must be done before applying the full-likelihood approach). This, of course, is
a function of the software rather than the underlying theory. Estimation based on collapsed
data is also much faster than estimation, based on individual subject-band data. Estimating
the model based on grouped data requires application of the actuarial assumption and ap-
proximation of person-time at risk although these approximations are usually reasonable in
practice. Clearly, exact survival times should be utilized in preference to grouped survival
times whenever possible.
Each approach requires the user to subdivide follow-up into pre-speci�ed intervals and the

excess hazard is assumed constant within these intervals. We chose to use annual intervals in
our example although intervals of any length may be used with any of the four approaches.
The intervals do not have to be of equal length and there is a good argument for using shorter
intervals (e.g. of length 3 or 6 months) early in the follow-up where most deaths occur and
the excess hazard changes most rapidly. All approaches described in this paper can be used
to model relative survival estimated using the so-called period method [26, 27].
As with any model where e�ects are assumed to be multiplicative (e.g. logistic regression,

Poisson regression, Cox regression), one must be aware that relative measures (relative risks)
do not always provide the complete picture. It is possible that a large, highly statistically
signi�cant relative risk (excess hazard ratio) is of little clinical interest when absolute risks
are small. Absolute risks (e.g. excess deaths per 1000 person-years) can easily be estimated
based on the �tted model.
We have developed SAS and Stata code (available from http://www.pauldickman.com/

rsmodel/) to estimate relative survival using life-table methods and �t the relative survival
model using each of the approaches described in this paper. An ongoing topic of discussion
among researchers in the �eld of cancer survival analysis has been the relative merits of the
two competing ‘models’ for relative survival [15, 16] and the merits of the corresponding
software packages [19, 28]. Much of the discussion has confused the merits of the ‘models’
with the merits of the associated software. With this paper we hope that we have resolved
much of this controversy by showing that the two underlying models are, in fact, identical and
that the di�erent approaches to estimation produce results which are very similar in practice.
Utilizing an approach analogous to that used in the analysis of cohort studies, we have shown
how the relative survival model can be estimated easily using mainstream statistical software
packages, thereby removing the reliance on special-purpose software.
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