Flexible parametric survival models
in cancer epidemiology:

advantages and ... more advantages

Paul W Dickman
(in collaboration with Paul C Lambert)

Finnish Cancer Registry
29 Nov 2018

S .

‘e Karolinska
32§~ 5 Institutet
g



Why | use parametric survival models

o | analyse large population-based datasets where
o The proportional hazards assumption is rarely appropriate.
e The hazard function is of interest.
o A hazard ratio does not tell the whole story.

@ | model excess mortality/net survival among cancer patients.

e Not possible to fit the Cox model.
e Proportional excess hazards rarely true.
e Quantities of than the excess hazard ratio are of interest.

@ Quantification and presentation of absolute risks and rates.

e Should be done more than it is.
e Much easier if you estimate the baseline.

@ Many useful extensions are much easier in a parametric setting.

Paul Dickman Flexible Parametric Survival Models Finnish Cancer Registry 29 Nov 2018



Childbirth rates among Hodgkin lymphoma

survivors in Sweden (Weibull et al. 2018 [1])
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Childbirth rates among Hodgkin lymphoma

survivors in Sweden (Weibull et al. 2018 [1])
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Sex differences in bladder cancer survival [2]
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Available online at www.sciencedirect.com
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journal homepage: www.ejcancer.com
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Sex differences in bladder cancer survival [2]
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Fig. 2. Risk ratio (excess mortality rate ratio) including confidence
intervals for men versus women with bladder cancer diagnosis. The
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Sex differences in bladder cancer survival [2]
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Fig. 3. Relative survival for men, women and women assuming the
same T-stage distribution as men. Black (grey) lines: mean survival
curve for men (women); Dashed grey line: survival curve for
women when assuming men’s covariate pattern.
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Loss in expectation of life: CML (Sweden) [3]
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A sneak peek at my conclusions

| use and advocate flexible parametric survival models. However,

@ There is nothing wrong with using a Cox model.

@ If you only want to estimate a hazard ratio and you ‘know’ you
have proportional hazards then a Cox model is ideal.

@ Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

@ However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

You will get the same hazard ratio, but a whole lot more.
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Example: survival of patients diagnosed

with colon carcinoma

@ Patients diagnosed with colon carcinoma 1984-95. Potential
follow-up to end of 1995; censored after 10 years.

@ Outcome is death due to colon carcinoma.

@ Interest is in the effect of clinical stage at diagnosis (distant
metastases vs no distant metastases).

@ How might we specify a statistical model for these data?
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Hazard (deaths/person-year)
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The Cox model (Cox 1972 [4])

@ Over 33,000 citations (Web of Science, November 2018).
@ 24th on Nature's 2014 list of most-cited paper of all time for all
fields.

i(tlx:) = ho( ) exp (xi5) J

Estimates (log) hazard ratios.

Advantage: The baseline hazard, ho(t) is not estimated.

Disadvantage: The baseline hazard, hy(t) is not estimated.
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An interview with Sir David Cox (Reid 1994 [5])

Reid

Cox

Reid

Cox

“What do you think of the cottage industry that’s grown up
around [the Cox model]?”

“In the light of further results one knows since, | think |
would normally want to tackle the problem parametrically.
... I'm not keen on non-parametric formulations normally.”

“So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was
a feeling among the medical statisticians that that wasn't
quite right.”

“That's right, but since then various people have shown that
the answers are very insensitive to the parametric
formulation of the underlying distribution. And if you want
to do things like predict the outcome for a particular patient,
it's much more convenient to do that parametrically.”
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Some common survival models in epidemiology

@ Commonly used models have the same basic formulation.

hi(t) = ho(t) exp(xif3)
In(hi(t)) = In(ho(t)) + xif3

@ Proportional hazards assumed by default (but can be relaxed).

@ Primary difference is in specification of the baseline hazard:

Cox model: ho(t) an arbitrary function of time; not estimated.
Poisson regression model: hg(t) is a step function.

Weibull model: ho(t) = Ayt7~!

Flexible parametric model: ho(t) modelled using splines.
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Flexible Parametric Survival Models [6, 7, 8]

o First introduced by Royston and Parmar (2002) [6].
@ Applicable for ‘standard’ and relative survival models.
@ Usually easier to model on the log cumulative hazard scale

@ In(Ho(t)) modelled using restricted cubic splines.

H;(t) = Ho(t) exp(xif3)
In(H;(t)) = In(Ho(t)) + xi3
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Smoothed empirical hazards (cancer-specific mortality rates’
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Fitted hazard
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Fitted hazards from parametric survival model (exponential)
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Fitted hazards from Poisson model (yearly intervals)
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Fitted hazards from Poisson model (3-months)
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Fitted hazards from Poisson model (months)
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Fitted hazards from Poisson model (rcs 5df)
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Fitted hazards from parametric survival model (Weibull)
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Hazard
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Fitted cumulative hazards from Weibull model
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Cumulative hazard

Fitted cumulative hazards from fpm (5df)
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Fitted hazards from flexible parametric model (5df)
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Do splines capture the underlying shape?

e With any statistical method we need to assess its performance.

@ We have performed a number of simulation studies.

@ In summary, the models can capture many complex shapes of
the underlying hazard and survival functions for both

proportional hazards [9] and, importantly, when relaxing the
proportional hazards assumption [10].

@ Results are, in general, not sensitive to choices of number and
location of knots.
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Example using attained age as the time-scale

@ Study from Sweden[11] comparing incidence of hip fracture of,

e 17,731 men diagnosed with prostate cancer treated with
bilateral orchiectomy (surgical removal of testicles).

e 43,230 men diagnosed with prostate cancer not treated with
bilateral orchiectomy.

e 362,354 men randomly selected from the general population.

@ Study entry is 6 months post diagnosis.

@ Outcome is femoral neck fracture.

@ Attained age is used as the primary time-scale.

@ Provides estimates of age-specific incidence rates.

@ Actually two timescales of interest, but we will initially ignore
time since exposure.
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Estimates from a proportional hazards model

@ Estimated IRRs compared to population comparators.

Cox Model
Incidence rate ratio (no orchiectomy) = 1.37 (1.28 to 1.46)

Incidence rate ratio (orchiectomy) 2.09 (1.93 to 2.27)

Flexible Parametric Model
Incidence rate ratio (no orchiectomy) = 1.37 (1.28 to 1.46)

Incidence rate ratio (orchiectomy) = 2.09 (1.93 to 2.27)
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Proportional Hazards
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Non Proportional Hazards
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Incidence Rate Ratio

Orchiectomy vs Control
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Incidence Rate Difference

Orchiectomy vs Control
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Multiple Time-scales

Both attained age and time since diagnosis can be modelled
simultaneously, i.e. two time-scales[11]. Main time-scale is age.

@ Better to use hazard scale.

@ Model for PH, but can be extended to time-dependent effects.

In[h(a|x;, a0i)] = s (a|vo, ko) + xiB + s (a — aoi|v1, k1) J

@ ap; is age at diagnosis

@ Numerical integration required to obtain cumulative hazard for

each individual at each iteration.

InL; = d: In[h(t)] — /ti h(u)du J

to;

For orchiectomy data (N=423,315) takes 3-4 minutes
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Adjusted survival curves

Hernan (2010) [12] suggests estimating survival curves adjusted
for baseline covariates.

@ These are extremely easy to obtain after fitting a flexible
parametric model.

There is not a single definition of ‘adjusted survival curve’.

Approaches include using the mean value of all covariates [13],
the mean of all predicted survival curves [14] and inverse
probability weighting [15].

The first is more common in standard software; Hernan is
referring to the ‘the mean of all predicted survival curves'.
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Adjusted survival curves: mean covariate method

@ Most software (e.g., stcurve) uses the mean covariate method.
@ This gives the survival for an individual who happens to have the
mean value of all covariates. For example, for a Cox model the

mean survival is,

o~

Sind(t) = exp (—Ho(t) exp (f1X1 + B2%2))

@ This is the survival of an ‘average’ individual, who happens to
have the average values of all covariates.

@ Problem with categorical covariates. May predict for someone
with a proportion of each stage and who is 50% male.
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Adjusted survival curves:

average of individual predictions

@ The predicted survival for individual i is

~

Si(t) = exp (—Ho(t) exp (Bix1;i + Boxai))

@ We then average over all predicted survival curves

@ The model can be as complex as required (continuous covariates,
interactions, non-linear functions, non-proportional hazards).

@ Note that we are predicting a curve, not S(t) evaluated at a
single time point.

2 |
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Standardized survival curves

@ When interest lies in comparing the survival of (two) exposure
groups we need to standardize to the same covariate distribution.

@ Let X be the exposure of interest.

@ Let Z denote the set of measured covariates.

SPtIX =x,2) = NZS (t|X = x, Z)

i=1

@ Note that the average is over the marginal distribution of Z, not
over the conditional distribution of Z among those with X = x.

@ We are forcing the same covariate distribution on both exposure
groups.
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Example: Renal dialysis

@ 252 patients entering a renal dialysis program in Leicestershire,
England 1982-1991 with follow-up to the end of 1994.

@ Interest in difference in survival by ethnicity
(Non-South Asian vs South Asian).

@ At the time of the study, approximately 25% of the population
were of South Asian origin.
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Kaplan-Meier Curves - Renal Replacement Therapy
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Predictions for Standardised Survival Curves

The meansurv option

stpm2 asian age, df(3) scale(hazard)

/* Age distribution for study population as a whole */
predict meansurv_popO, meansurv at(asian 0)

predict meansurv_popl, meansurv at(asian 1)

/* Age distribution for non-asians */
predict meansurv_popOb if asian == 0, meansurv at(asian 0)
predict meansurv_poplb if asian == 0, meansurv at(asian 1)

/* Age distribution for asians */
predict meansurv_popOc if asian == 1, meansurv at(asian 0)
predict meansurv_poplc if asian == 1, meansurv at(asian 1)

@ 5(t) calculated for each subject in the study population and
averaged.
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Predictions for Standardised Survival Curves 2

@ The adjusted curves show the survival we would expect to see in
both groups if each had the age distribution of the study
population as a whole.
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Standardized Survival Curve 1
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Standardized Survival Curve 2

Age Distribution in Non—Asians
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Standardized Survival Curve 3

Age distribution in Asians
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Difference in standardised survival

@ We can estimate the difference in standardised survival,

N N

0(t, x) = %Zsmx —12)- %Zsmx ~0,2)

i=1 i=1

o If we have controlled for all confounders then this is a causal
survival function difference.

@ The model can be as complex as we like. It is just as easy to
predict survival functions if we have non-linear effects, various
interactions, including interactions with time (non proportional
hazards). These interactions could include our exposure variable.
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Software for regression standardisation

e With Stata stpm?2, the meansurv option to predict produces
an average of predicted survival curves for each observation.

@ stpm2_standsurv and standsurv (under development) are
faster.

@ R users can use the stdReg package (Arvid Sjolander).
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Extrapolation

We are often warned about the dangers of extrapolation.

@ However, sometimes to be able say something useful we need to
extrapolate.

@ For example, to estimate prevalence of cancer in 2030 we need
to extrapolate incidence, survival, changing demographics and
potentially changing risk factors [16].

@ Common to extrapolate survival to end of life in economic
evaluations [17].

e Often done badly, making simple assumptions.

@ Assumptions should be transparent. Good practice to show
sensitivity analysis.

@ We need parametric methods to extrapolate.
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Impact of a cancer diagnosis on life expectancy

@ We have promoted a number of alternative metrics in
population-based cancer studies. One of which is reduction in
live expectancy associated with a diagnosis of cancer.

@ Extrapolation to end of life is needed for this.

@ We know a lot about how mortality rates vary by demographic
factors. We can utilise this external information to help with our
extrapolation.
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Expectation of life
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Loss in expectation of life
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Limited follow-up
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How do we extrapolate all-cause survival?
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Partitioning the mortality rate

@ In population based cancer survival we make use of relative
survival methods.

All-cause survival = Expected survival x Relative survival

S(t) = S"(t)R(t)

@ The total mortality (hazard) rate is the sum of two components.

All cause _ Expected Excess
Mortality Rate =~ Mortality Rate Mortality Rate
h(t) = h*(t) = A(t)

o Fairly easy to extrapolate expected survival.

@ Can make simple assumptions about excess mortality rate.
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Assumptions when we extrapolate

@ Simple assumptions about excess mortality when extrapolating.

@ Cure: no excess mortality after a certain point in time[18]
© Constant excess mortality after a certain point in time

© Excess mortality estimated from the model (linear with log time)

Loss in expectation of life
tmax tmax
LEL(z) :/ 5*(t‘z/)dt—/ 5(t,z)
0 0

tmax tmax
LEL(z) = / S*(t,7)dt — / S*(t,7) x dt
0 0

@ As time since diagnosis increases, the expected mortality rate
dominates.
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Loss in expectation of life: CML (Sweden)[3]
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Even more

Cure models [18].
Random effect models [19].
Joint models [20].

Multi-state models

Competing Risks
o Cause-specific models [21]
e Direct modelling (subhazards) [22, 22].

Restricted mean survival time [23].

Prognostic modelling.
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Conclusion

There is nothing wrong with using a Cox model.

If you only want to estimate a hazard ratio and that you ‘know’
you have proportional hazards then a Cox model is ideal.

Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

(]

You will get the same hazard ratio, but a whole lot more.

(]
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