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Abstract. When estimating patient survival using data collected by population-
based cancer registries, it is common to estimate net survival in a relative-survival
framework. Net survival can be estimated using the relative-survival ratio, which
is the ratio of the observed survival of the patients (where all deaths are considered
events) to the expected survival of a comparable group from the general population.
In this article, we describe a command, strs, for life-table estimation of relative
survival. We discuss three methods for estimating expected survival, as well as
the cohort, period, and hybrid approaches for estimating relative survival. We also
implement a life-table version of the Pohar Perme (2012, Biometrics 68: 113–120)
estimator of net survival, and we describe two methods for age standardization.
We also explain how, in addition to net probabilities of death, crude probabilities of
death due to cancer and due to other causes can be estimated using the method of
Cronin and Feuer (2000, Statistics in Medicine 19: 1729–1740). We conclude this
article with discussion and examples of modeling excess mortality using various
approaches, including the full-likelihood approach (using the ml command) and
Poisson regression (using the glm command with a user-specified link function).

Keywords: st0376, strs, excess mortality, relative survival, survival analysis, Pois-
son regression, life table, cancer survival, period analysis

1 Introduction

When studying population-based cancer survival (that is, the estimation of patient
survival using data collected by population-based cancer registries), we are typically
interested in estimating the probability that patients will die of their specific cancer.
That is, we have a competing-risks setting and can choose to estimate either net or
crude probabilities of death due to cancer (Tsiatis 2005). A common approach with
competing-risks data is to classify the cause of death of each individual who dies and use
this information to estimate what is commonly called cause-specific survival. Such an
approach can be problematic with cancer registry data, because information on cause of
death is often unreliable or unavailable (Gamel and Vogel 2001). As such, it is common
in population-based cancer survival to instead estimate the chosen measure (crude or
net probability) in a relative-survival (RS) framework, where cause-of-death information
is not required (Dickman and Adami 2006; Dickman et al. 2004; Estève et al. 1990).

In an RS framework, we estimate the excess mortality rate as the difference between
the total (all-cause) mortality rate among the patients and the expected mortality rate
of a comparable group from the general population, matched to the patients with respect
to the main factors affecting patient survival and assumed to be practically free of the
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cancer of interest. The major advantages of using an RS framework are that it does
not require information on cause of death and that it provides a measure of the excess
mortality experienced by patients diagnosed with cancer, regardless of whether the
excess mortality is directly or indirectly (for example, due to treatment complications)
attributable to the cancer. RS, the survival analogue of excess mortality, is estimated
from life tables as the ratio of the observed survival of the patients (where all deaths are
considered events) to the expected survival. It is common to estimate expected survival
from nationwide population life tables stratified by age, sex, calendar time, and, where
applicable, race.

In this article, we describe how to estimate various measures, such as crude and
net probabilities of death, in an RS framework, and we explain how to implement these
measures in Stata. Our focus is on population-based cancer survival, although the utility
of the methodologic approach is not restricted to studying cancer (Nelson et al. 2008).

2 Overview of approaches

It is important to distinguish between the measures (crude and net probabilities), the
framework (cause-specific or relative) for estimating the chosen measure, and the esti-
mators available within the chosen framework.

• Crude survival (measure)

– Cause-specific framework

∗ Standard estimators of the cumulative incidence function in the presence
of competing risks (for example, Coviello and Boggess [2004]; Hinchliffe
and Lambert [2013])

– RS framework

∗ Life-table approach (Cronin and Feuer 2000) implemented in strs

∗ Model-based approach (Lambert et al. 2010) implemented in stpm2cm

• Net survival (measure)

– Cause-specific framework

∗ Censored survival times of those who die of causes other than cancer and
application of standard estimators (for example, Kaplan–Meier)

– RS framework

∗ Ederer I estimator (Ederer, Axtell, and Cutler 1961)

∗ Ederer II estimator (Ederer and Heise 1959)

∗ Hakulinen estimator (Hakulinen 1982)

∗ Model-based estimator (for example, Estève et al. [1990]; Lambert and
Royston [2009])

∗ Pohar Perme estimator (Pohar Perme, Stare, and Estève 2012)
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For population-based cancer survival, we typically estimate net survival in an RS

framework, and this is our primary focus in this article. The strs command supports
each of the five estimators listed above for net survival in an RS framework. The Pohar
Perme estimator estimates net survival in an RS framework but is not RS (see section 3.4
for details).

The choice of measure, setting, and estimator depends on the specific research ques-
tion and the available data. The cause-specific framework requires accurate classifica-
tion of cause of death, whereas the RS framework requires appropriate estimation of
the expected survival (which usually requires an assumption that the patients would be
similar to the general population if they did not have cancer). Cancer patients in clini-
cal trials are usually specially selected and, therefore, not representative of the general
population. The classification of cause of death is usually quite good in clinical trials,
so cause-specific methods are usually preferred.

For population-based studies, on the other hand, cause of death comes from routine
information from the death certificate (if it is available at all). For many types of
cancer, it is reasonable to assume that the patients would have mortality similar to the
general population if they did not have cancer, so an RS framework is usually preferred.
There are scenarios, however, where it may be preferable to estimate net survival in
a cause-specific setting (see Howlader et al. [2010] for examples). Similarly, there are
some research questions in population-based cancer survival that are best addressed
using crude survival rather than net survival (Eloranta et al. 2013).

3 Estimating net survival in an RS framework

Among the five estimators of net survival in an RS framework, the Ederer II, Pohar
Perme, and model-based estimators all have practical merit.1 Although the Ederer II
method is theoretically biased, the bias in age-standardized estimates is usually neg-
ligible in practice. The Pohar Perme estimator has a slightly higher variance than
the other two methods, but at five years, there is usually very little difference be-
tween the three preferred approaches (Seppä, Hakulinen, and Pokhrel Forthcoming;
Lambert, Dickman, and Rutherford 2014).

3.1 RS

RS is defined as the ratio of the all-cause survival of the patients, Si(t), to the all-cause
survival that would be expected, S∗

i (t), in the absence of the specific disease under study.
We note that RS is always estimated in an RS framework, but not all estimators in an
RS framework are RS. The first three estimators in an RS framework in section 2 are RS,
whereas the last two are not. It is important to recognize the distinction, made clear by
Pohar Perme, Stare, and Estève (2012), between RS (the ratio of the marginal observed

1. The Ederer I and Hakulinen estimators, on the other hand, are not recommended; we include them
here primarily for academic purposes.
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to the marginal expected survival) and net survival (the average of the individual-specific
RS). That is,

RS =

1
n

n∑
i=1

Si(t)

1
n

n∑
i=1

S∗
i (t)

is not necessarily equal to

net survival =
1

n

n∑
i=1

Si(t)

S∗
i (t)

Nevertheless, RS was developed as an estimator of net survival, and we maintain
that it should still be considered an estimator of net survival (albeit with a small bias).
As recognized long ago, RS is not a perfect estimator of net survival, hence the various
approaches to estimating the marginal expected survival (described in section 3.3). The
concept of RS was introduced by Berkson (1942), although he did not use the term RS.
Ederer, Axtell, and Cutler (1961) defined the “RS rate” as

the ratio of the observed survival rate in a group of patients, during a spec-
ified interval, to the expected survival rate. The expected survival rate is
that of a group similar to the patient group in such characteristics as age,
sex, and race, but free of the specific disease under study.

We note that RS is a ratio, not a rate, and that observed and expected survival are
proportions rather than rates, but we otherwise use this same definition.

Berkson (1942) proposed RS as an estimator for “the survival so far as cancer is
concerned”, which is the concept today known as net survival. Although Ederer and
colleagues did not use the term “net survival”, it is clear they viewed both cause-
specific survival and relative survival as estimators of net survival, a view that we share.
Estève et al. (1990) also expressed this view and wrote “although this is hardly explicit
in Ederer, Axtell, and Cutler (1961), the intention of the originators of this concept was
to estimate net survival”.

3.2 Estimating observed (all-cause) survival

For traditional cohort life tables, strs uses the usual actuarial estimator. Interval-
specific observed survival for interval i is pi = (1− di/l

′
i), where di is the number alive

at the start of interval i, di is the number of deaths in the interval, and l′i = li−wi/2 is
the effective number at risk (li is the number alive at the start of the interval and wi is
the number censored during the interval). In period analysis (see section 4.6), survival
times can be left-truncated in addition to being right-censored, so fewer subjects are
at risk for the full interval. In this case, wi would need to represent the number of
individuals whose survival time was left-truncated or right-censored.
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As such, whenever late entry is detected (that is, a period approach is used), strs
estimates survival by transforming the estimated cumulative hazard, S = exp(−Λ). We
can estimate the average hazard for an interval as λi = di/yi, where di is the number
of deaths and yi is the person-time at risk in the interval. If the hazard is assumed
to be constant at this value during the interval, then the cumulative hazard for the
interval is Λi = ki × di/yi, where ki is the width of the interval. Our estimate of the
interval-specific observed survival is, therefore, pi = exp{ki × (−di/yi)}.

Because this approach assumes the hazard is constant within the interval, it can be
sensitive to the choice of interval length, unlike the actuarial approach, which gives the
same estimates of cumulative observed survival independent of the choice of intervals.

3.3 Estimating expected survival

The three most widely known methods for estimating expected survival for the purpose
of estimating RS are the Ederer I (Ederer, Axtell, and Cutler 1961), Ederer II (Ederer
and Heise 1959), and Hakulinen (Hakulinen 1982) estimators. The Hakulinen estimator
was recommended until 2011, when Hakulinen suggested converting to the Ederer II
estimator (Hakulinen, Seppä, and Lambert 2011). That is, the Ederer II estimator is the
preferred method among the estimators of relative survival; the Ederer I and Hakulinen
estimators are described primarily for academic purposes. The Ederer I estimator is,
however, useful for purposes other than estimating RS.

strs implements all three methods, with Ederer II being the default. Expected
survival can be thought of as being calculated for a cohort of patients from the general
population matched by age, sex, and period. The three methods differ regarding how
long each matched individual is considered to be at risk for the purpose of estimating
expected survival.2

Ederer I: The matched individuals are considered to be at risk indefinitely (even beyond
the closing date of the study). The time at which a cancer patient dies or is
censored has no effect on the expected survival.

Ederer II: The matched individuals are considered to be at risk until the corresponding
cancer patient dies or is censored.

Hakulinen: If the survival time of a cancer patient is censored, then so is the survival
time of the matched individual. However, if a cancer patient dies, the matched
individual is assumed to be at risk until the closing date of the study.

Although the Ederer I method provides unbiased estimates of the expected survival
proportion, its application, together with a potentially biased observed survival pro-
portion, results in biased estimates (usually overestimates) of the RS ratio (Hakulinen
1982) because the method does not allow for the possibility that potential follow-up

2. The mathematical details of the methods are available in an appendix to this publication at
http://www.pauldickman.com/rsmodel/expected.pdf.



P. W. Dickman and E. Coviello 191

times of the patients may be unequal lengths. See Hakulinen, Seppä, and Lambert
(2011); Pohar Perme, Stare, and Estève (2012); Rutherford, Dickman, and Lambert
(2012); Danieli et al. (2012); Seppä, Hakulinen, and Pokhrel (Forthcoming); and Lam-
bert, Dickman, and Rutherford (2014) for further details of the differences between the
approaches.

3.4 Pohar Perme estimator of net survival

Pohar Perme, Stare, and Estève (2012) showed that the Ederer I, Ederer II, and Haku-
linen estimators of net survival were biased, and they described a new, unbiased esti-
mator. With the new approach, called the Pohar Perme estimator, net survival for a
cohort is estimated by weighting by the inverse of the individual-specific expected sur-
vival probabilities. The weights inflate the observed person-time and number of deaths
to account for person-time and deaths not observed as a result of mortality due to
competing causes.

The Pohar Perme estimator (Pohar Perme, Stare, and Estève 2012) was developed
for continuous survival times, yet cancer registries often have only discrete survival times
(for example, survival time in completed months or completed years). Therefore, we
have implemented the Pohar Perme approach in a life-table framework that is suitable
when survival times are discrete but works equally well when survival times are con-
tinuous (estimates are essentially identical to Pohar Perme’s R command). The strs

command implements two alternative approaches to estimation: actuarial and hazard
transformation, which give similar results.

By default, an actuarial approach is used for estimation where weights are based
on the cumulative expected survival at the midpoint of the interval. If late entry is
detected (that is, period analysis) or the ht option is specified, then net survival is
estimated by transforming the cumulative excess hazard. The algorithm for the hazard
transformation approach is identical to that implemented in stnet and described in a
companion article (Coviello et al. 2015). The estimates obtained by strs and stnet

are identical, but stnet is slightly faster because it is optimized for the one estimator.

Our actuarial estimator of net survival, NSi, is

NSi =
1− dwi

nwi −cwi /2

exp

⎧⎪⎨⎪⎩−
ni∑
j

λ∗w
j −

ci∑
j

λ∗w
j /2−

di∑
j

λ∗w
j /2

nwi −(dwi +cwi )/2

⎫⎪⎬⎪⎭
where nwi , d

w
i , and cwi are the weighted number of individuals alive at the start of

the interval, weighted number of deaths during the interval, and weighted number of
censorings during the interval, respectively. λ∗wj is the weighted expected hazard. The
weights are the inverse of the cumulative expected survival probability and are computed
at the midpoint of each interval i.
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3.5 Standard errors and confidence intervals

The standard error of the observed survival proportion is estimated using Greenwood’s
(1926) method when life-table estimation is used. When it is estimated using a hazard
transformation approach, the variance of the cumulative hazard (Breslow and Day 1987,
equation 2.2) is

var(Λ) =
∑

intervals i

k2i di
y2i

where ki is the interval width, di is the number of deaths, and yi is the person-time at
risk. When using the delta method, the variance of the survival proportion is

var(S) = var{exp(−Λ)}

=

{
d

dΛ
exp(−Λ)

}2

var(Λ)

= S2var(Λ)

The standard error of the RS ratio is estimated as the standard error of the observed
survival proportion divided by the expected survival proportion (Ederer, Axtell, and
Cutler 1961).3 Confidence intervals (CIs) are calculated on the log cumulative-hazard
scale; that is, we first calculate a CI for log(− logS), and then we back-transform to the
survival scale.

The strs command calculates standard errors and CIs, but they are sometimes sup-
pressed in the display of results in this article. A bias–variance tradeoff is involved in
some of the choices facing practitioners of these methods. For example, period anal-
ysis (see section 4.6) excludes person-time at risk (and, hence, increases variance) to
obtain up-to-date estimates. In addition to the choice between period and cohort ap-
proaches, a bias–variance tradeoff also exists in the choice of the width of the period
window. Lambert, Dickman, and Rutherford (2014) discuss the bias–variance tradeoff
in choosing between the various estimators of net survival in an RS framework.

4 The strs command

In general, two data files are required to estimate relative survival: a file containing
individual-level data on the patients and a file containing expected probabilities of
death for a comparable general population (popmort.dta; see section 4.3). The strs

command is for use with survival-time (st) data; the patient data file must be stset

using the id() option with time since entry in years as the timescale before using strs

(see [ST] stset). The basis of the estimation algorithm is to split the data using stsplit,
thereby obtaining one observation for each individual for each life-table interval (which

3. This is standard, although Brenner and Hakulinen (2005) showed that assuming expected survival
to be known (rather than estimated with random error) results in biased estimates of the standard
error of the RS ratio (usually overestimation due to positive correlation between the standard errors
of the observed and expected survivals).
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do not have to be of equal lengths). The expected probabilities are then obtained by
merging with the popmort.dta file, and the data are collapsed to obtain one observation
for each life-table interval. Expected survival may be estimated using the Ederer I
(ederer1 option), Ederer II (default), or Hakulinen method (potfu() option).

4.1 Syntax

strs using filename
[
if
] [

in
] [

weight
]
, mergeby(varlist) breaks(numlist)[

by(varlist) diagage(varname) diagyear(varname) attage(newvar)

attyear(newvar) survprob(varname) maxage(#) potfu(varname) ederer1

pohar ht calyear cuminc standstrata(varname) brenner list(varlist)

keep(varlist) format(%fmt) notables level(#) save
[
(replace)

]
savstand(filename

[
, replace

]
) savind(filename

[
, replace

]
)

savgroup(filename
[
, replace

]
)
]

using filename specifies a file containing general-population survival probabilities
(see section 4.3).

Importance weights (iweights) can be used to produce age-standardized estimates;
see the example in section 4.7.

4.2 Options

mergeby(varlist) specifies the variables that uniquely determine the records in the
file of general-population survival probabilities (the using file, also known as the
popmort.dta file). The using file must be sorted by these variables because the
patient file and using file are merged according to these variables. mergeby() is
required.

breaks(numlist) specifies the cutpoints for the life-table intervals as an ascending num-
list commencing at 0. The cutpoints need not be integers nor equidistant, but the
units must be years; for example, specify breaks(0(0.0833)5) for monthly intervals
up to five years. breaks() is required.

by(varlist) specifies the life-table stratification variables. One life table is estimated for
each combination of these variables.

diagage(varname) specifies the variable containing age at diagnosis in years, which
does not have to contain integer values. The default is diagage(age).

diagyear(varname) specifies the variable containing calendar year of diagnosis. The
default is diagyear(yydx).

attage(newvar) specifies the variable containing attained age (that is, age at the time
of follow-up). This variable cannot exist in the patient data file (it is created as the
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integer part of age at diagnosis plus follow-up time) but must exist in the using file.
The default is attage( age).

attyear(newvar) specifies the variable containing attained calendar year (that is, cal-
endar year at the time of follow-up). This variable cannot exist in the patient data
file (it is created as the integer part of year of diagnosis plus follow-up time) but
must exist in the using file. The default is attyear( year).

survprob(varname) specifies the variable in the using file that contains the general-
population survival probabilities. The default is survprob(prob).

maxage(#) specifies the maximum age for which general-population survival probabili-
ties are provided in the using file. Probabilities for individuals older than this value
are assumed to be the same as for the maximum age. The default is maxage(99).

potfu(varname) specifies the variable containing the last time of potential follow-up.
This option is required for calculating Hakulinen estimates of expected survival and
causes strs to report Hakulinen estimates by default. The variable must be in the
same time units as the exit time, and a variable containing the time origin must be
specified; in practice, it is recommended that potfu() specify a variable containing
a date and that the data be stset by specifying the dates of entry and exit with
the entry date as the time origin. See the example in section 4.5.

ederer1 specifies that Ederer I estimates be calculated and causes strs to report these
by default (unless potfu() is also specified).

pohar specifies that the Pohar Perme estimates of net survival be calculated and causes
strs to report these by default (unless potfu() is also specified).

ht specifies that survival be estimated by transforming the estimated cumulative haz-
ard. ht can be specified with Ederer II (the default), Hakulinen (potfu()), and
Pohar Perme (pohar), but not with Ederer I (ederer1). The hazard transformation
approach is the default when late entry is detected (for example, period analysis);
otherwise, survival is estimated using an actuarial approach.

calyear causes strs to split follow-up by each calendar year, resulting in slightly more
accurate estimates but at the expense of computational efficiency. calyear is avail-
able for use only with the pohar option or Ederer II estimation (the default).

cuminc specifies that cumulative incidence of death due to cancer (ci dc) and cumula-
tive incidence of death due to causes other than cancer (ci do) be calculated using
the method of Cronin and Feuer (2000). Note that the cumulative incidence of death
due to cancer is estimated in the presence of competing risks, so it will be lower than
(1−RS) because the latter is assumed to be in the absence of competing risks.

standstrata(varname) specifies a variable defining strata across which to average the
cumulative survival estimate. With this option, a weight must also be specified as
follows: [iweight=varname].
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brenner specifies that the age standardization be performed using the approach pro-
posed by Brenner et al. (2004). This option requires that standstrata() (and,
therefore, [iweight=varname]) is also specified.

list(varlist) specifies the variables to be listed in the life tables. The variables start
and end are included by default; however, if only one of these is specified in the
list() option, then the other is suppressed.

keep(varlist) restricts the variables to be written to the individual-level output dataset
(named individ.dta by default). This option requires that save() or saveind()
is also specified.

format(%fmt) specifies the format for variables containing survival estimates. The
default is format(%6.4f).

notables suppresses display of the life tables.

level(#) sets the confidence level based on the value of global macro S_level. The
default is level(95).

save
[
(replace)

]
creates two output datasets: individ.dta and grouped.dta. The

individ.dta dataset contains one observation for each patient for each life-table
interval, and grouped.dta contains one observation for each life-table interval. Use
save(replace) to overwrite these files. Excess mortality (RS) may be modeled using
these output datasets (see section 5).

savstand(filename
[
, replace

]
) specifies that standardized estimates be saved to an

output dataset.

savind(filename
[
, replace

]
) and savgroup(filename

[
, replace

]
) specify alterna-

tive filenames for the individual and grouped output datasets, respectively.

4.3 The population mortality file

The population mortality file (typically named popmort.dta) must contain general-
population survival probabilities (conditional probabilities of surviving one year) strat-
ified by those variables which uniquely determine the records and upon which it is
assumed that expected survival depends. Typically, those variables are age, sex, and
period, but further variables may be included, such as race, region of residence, or so-
cial class (Coleman et al. 1999). Such probabilities (or corresponding rates that can
be transformed to probabilities) are available from the Human Mortality Database4 for
many populations or can be obtained from local government authorities (typically the
central statistics office). The filename is specified via the using option, and the vari-
ables by which the file is sorted are specified using the mergeby(varlist) option. The
following is a listing of the first five rows of the Finnish popmort.dta file:

4. See http://www.mortality.org/.
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. use popmort

. list in 1/5

sex _year _age prob rate

1. 1 1951 0 .96429 .0363632
2. 1 1951 1 .99639 .0036165
3. 1 1951 2 .99783 .0021724
4. 1 1951 3 .99842 .0015812
5. 1 1951 4 .99882 .0011807

Probabilities must be provided for every year that the patients will attain during
follow-up; if data are not available for recent years, it is standard practice to assume
the probabilities are the same as those most recently available (strs does not do this
automatically—popmort.dta must be extended). Patient survival is often estimated for
subgroups defined by year of diagnosis or age at diagnosis. When estimating expected
survival, we require the expected probabilities of death according to age and year at
time of follow-up (rather than time of diagnosis). The command must, therefore, keep
track of both.

We have adopted the convention of prefixing variable names with an underscore
when they are updated with follow-up; for example, the variable age carries age at
diagnosis and _age carries attained age. By default, the patient data file should contain
variables named age and yydx but cannot contain variables named _age and _year. The
popmort.dta file, on the other hand, should contain variables _age and _year because
the expected probabilities are merged using these “time-updated” variables. Alternative
variable names can be specified using the attage() and attyear() options.

4.4 Example 1: Life-table estimates of RS

Here we illustrate the command using data provided by the Finnish Cancer Registry
on patients diagnosed with colon carcinoma in Finland, 1975–1994. These data are
distributed with the strs package along with do-files to reproduce all analyses presented
in this article. We first estimate life tables for each gender (we show only the table for
males) using patients with clinically localized (stage==1) disease. We have chosen to
use six-month intervals for the first two intervals followed by annual intervals up to 10
years.
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. use colon
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. generate id = _n

. quietly stset surv_mm, failure(status==1 2) id(id) scale(12)

. strs using popmort if stage==1, breaks(0 0.5 1(1)10) mergeby(_year sex _age)
> by(sex) list(n d w cp cp_e2 cr_e2)

failure _d: status == 1 2
analysis time _t: surv_mm/12

id: id

No late entry detected - p is estimated using the actuarial method

-> sex = Male

start end n d w cp cp_e2 cr_e2

0 .5 2620 229 0 0.9126 0.9728 0.9381
.5 1 2391 99 0 0.8748 0.9484 0.9224
1 2 2292 229 166 0.7841 0.8993 0.8719
2 3 1897 180 139 0.7069 0.8517 0.8300
3 4 1578 140 119 0.6417 0.8048 0.7974

4 5 1319 113 104 0.5845 0.7588 0.7703
5 6 1102 102 81 0.5283 0.7143 0.7396
6 7 919 71 71 0.4859 0.6721 0.7229
7 8 777 59 72 0.4472 0.6312 0.7084
8 9 646 49 62 0.4115 0.5921 0.6950

9 10 535 33 58 0.3847 0.5545 0.6937

(output omitted )

Columns in the life table are number first at risk (n), deaths (d), censorings (w),
cumulative observed survival (cp), Ederer II cumulative expected survival (cp_e2), and
cumulative RS (cr_e2). The estimated one-year RS ratio is 0.922, and the estimated five-
year relative-survival ratio is 0.770. Other quantities provided by default but omitted
here (using the list() option) because of space limitations are interval-specific observed
survival (p), interval-specific expected survival (p_star), interval-specific RS (r), and
95% CIs for the interval-specific RS ratio. A variable name commencing with c typically
indicates a cumulative estimate rather than an interval-specific estimate.

When we stset the data, all deaths are classified as events (values 1 and 2 of the
variable status in these data indicate death due to cancer and noncancer, respectively).
The data did not initially contain an id variable, so we were required to create one (a
requirement of the stsplit command called by strs). We used the variable surv_mm

(containing time from diagnosis to death or censoring in months) to stset the data. The
timescale must be time since entry in years, so we applied a scale factor of scale(12).
We could have also used variables containing dates of diagnosis (dx) and exit (exit) to
stset the data (see the next example).

Because the life-table estimates can be saved to a dataset (see the save() option),
it is simple to produce graphs or tables of quantities of interest. For example, the
following example illustrates how we can tabulate the number of patients initially at
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risk along with the five-year observed, expected, and RS for each combination of age
and sex. Summary tables such as these are often presented in cancer registry reports
and scientific publications.

. use colon, clear
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. generate id = _n

. quietly stset surv_mm, failure(status==1 2) id(id) scale(12)

. strs using popmort if stage==1, breaks(0(1)10) mergeby(_year sex _age)
> by(sex agegrp) save(replace) notable

failure _d: status == 1 2
analysis time _t: surv_mm/12

id: id

No late entry detected - p is estimated using the actuarial method

. use grouped, clear
(Collapsed (or grouped) survival data)

. bysort sex agegr (end): generate n0=n[1]

. list sex agegr n0 cp cp_e2 cr_e2 lo_cr_e2 hi_cr_e2 if end==5, sepby(sex) noob

sex agegrp n0 cp cp_e2 cr_e2 lo_cr_e2 hi_cr_e2

Male 0-44 161 0.7737 0.9817 0.7881 0.7102 0.8486
Male 45-59 462 0.7686 0.9335 0.8233 0.7766 0.8636
Male 60-74 1228 0.5945 0.7915 0.7512 0.7128 0.7878
Male 75+ 769 0.4131 0.5312 0.7777 0.7067 0.8479

Female 0-44 136 0.7657 0.9932 0.7709 0.6866 0.8358
Female 45-59 531 0.7765 0.9763 0.7953 0.7536 0.8314
Female 60-74 1488 0.6993 0.8883 0.7873 0.7588 0.8141
Female 75+ 1499 0.4854 0.6210 0.7816 0.7374 0.8249

We see that the five-year observed survival (cp) decreases with age (as expected)
but the five-year RS (cr_e2) is similar across categories of age and sex. We could also
use the data in grouped.dta, for example, to plot survival estimates as a function of
follow-up time (see figure 1 in section 5.2 for a more advanced example).

4.5 Example 2: RS and net survival using four different methods

We now estimate RS using the three previously discussed methods for estimating ex-
pected survival (see section 3.3) and using the Pohar Perme estimator of net survival.
To estimate expected survival using the Hakulinen method, we use the potfu() option
to specify a variable containing the last date of potential follow-up for each patient. If
the ederer1 option is specified, then Ederer I estimates of expected survival and RS

are provided. The pohar option instructs strs to calculate Pohar Perme estimates of
net survival (see section 3.4). Ederer II estimates are produced by default (no option is
required). The following example illustrates how all estimates can be tabulated:
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. use colon, clear
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. generate id = _n

. quietly stset exit, origin(dx) failure(status==1 2) id(id) scale(365.24)

. generate long potfu = date("31/12/1995","DMY")

. strs using popmort if stage==1, breaks(0(1)10) mergeby(_year sex _age)
> by(sex) list(n d w cr_e1 cr_e2 cr_hak cns_pp) ederer1 potfu(potfu) pohar

(output omitted )

-> sex = Male

start end n d w cr_e1 cr_e2 cr_hak cns_pp

0 1 2620 328 0 0.9238 0.9238 0.9238 0.9212
1 2 2292 229 166 0.8758 0.8732 0.8756 0.8705
2 3 1897 180 139 0.8361 0.8312 0.8359 0.8300
3 4 1578 140 119 0.8050 0.7986 0.8049 0.7994
4 5 1319 113 104 0.7787 0.7715 0.7787 0.7771

5 6 1102 102 81 0.7486 0.7407 0.7487 0.7383
6 7 919 71 71 0.7333 0.7239 0.7335 0.7184
7 8 777 59 72 0.7200 0.7095 0.7202 0.7023
8 9 646 49 62 0.7082 0.6961 0.7082 0.6900
9 10 535 33 58 0.7085 0.6948 0.7087 0.6921

(output omitted )

We see only small differences between the estimates made using the Ederer I (cr_e1),
Ederer II (cr_e2), Hakulinen (cr_hak), and Pohar Perme (cns_pp) methods. Differ-
ences between the methods are generally small during the first 10 years of follow-up.

4.6 Example 3: Cohort, complete, period, and hybrid estimation
approaches

In this section, we demonstrate how to obtain period and hybrid estimates of RS. We
estimate 10-year survival of patients diagnosed with localized (stage==1) colon carci-
noma in Finland by using the Hakulinen method for estimating expected (and relative)
survival (table 1, at the end of this section). Our dataset includes all patients diagnosed
in 1975–1994, with follow-up until the end of 1995. We adopt the terminology for these
approaches (cohort, complete, period, and hybrid) from Brenner et al. (2004). The fun-
damental difference between the various approaches is in the definition of person-time
at risk. The call to strs is similar for each approach.

Cohort approach

To estimate 10-year survival using what Brenner et al. (2004) call the “cohort ap-
proach”, all patients must have a potential follow-up of at least 10 years. Our dataset
includes patients diagnosed in 1975–1994 with follow-up until the end of 1995. There-
fore, only patients diagnosed in 1985 or earlier can contribute to the cohort estimate of
10-year survival. This is easily implemented in Stata.
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. use colon, clear

. generate id = _n

. stset exit, origin(dx) failure(status==1 2) id(id) scale(365.24)

. generate long potfu = date("31/12/1995","DMY")

. strs using popmort if stage ==1 & yydx < 1986, breaks(0(1)10)
> mergeby(_year sex _age) by(sex) potfu(potfu)

Such estimates, based on patients diagnosed at least 10 years in the past, clearly
will not be relevant for recently diagnosed patients.

Complete approach

Before the introduction of period analysis, up-to-date estimates of patient survival were
typically made using what Brenner et al. (2004) call the “complete approach”, although
it is often referred to as the cohort approach. To estimate 10-year survival, we must
include some patients diagnosed more than 10 years ago, but we also include recently
diagnosed patients even though they cannot be followed for 10 years. The cumulative
10-year survival is estimated as a product of conditional survival probabilities, where
the recently diagnosed patients contribute to only some of the conditional estimates.
We would, therefore, include patients diagnosed up until 1994 (that is, as recent as
possible) but must, at a minimum, include patients diagnosed as far back as 1985. To
improve precision without overly sacrificing recency, we might decide to also include
patients diagnosed in 1994. That is, the conditional survival probability for the 10th
year will be based on those patients diagnosed in 1984 and 1985 who survived at least
9 years.

. strs using popmort if stage==1 & yydx >= 1984, breaks(0(1)10)
> mergeby(_year sex _age) by(sex) potfu(potfu)

Although more up-to-date than cohort estimates, these estimates are still heavily
influenced by the survival experience of patients diagnosed many years in the past.

Period approach

To overcome this drawback, Brenner and colleagues suggested that life-table estimates
of patient survival could be made using a period rather than a cohort (complete) ap-
proach (Brenner et al. 2004; Brenner and Gefeller 1996). Time at risk is left-truncated
at the start of the period window and right-censored at the end. If we consider the pre-
vious example using the complete approach, the conditional survival for the first year
is based on patients diagnosed during an 11-year period (1984–1994), and conditional
survival for the second year is based on patients diagnosed during a 10-year period
(1984–1993). With period analysis, each conditional probability is estimated based on
the survival experience of only recently diagnosed patients. There is a trade-off between
precision and recency; a narrow period window (for example, one year) will improve
recency but reduce precision compared with a wider period window (for example, five
years).
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Period analysis provides more accurate predictions of the prognosis of newly diag-
nosed patients and is able to detect temporal trends in patient survival sooner than the
traditional cohort approach (Brenner and Hakulinen 2009). Our approach to period
estimation is to first identify the time at risk during the period window for each indi-
vidual by applying stset with calendar time as the timescale. For example, we might
be interested in the period between 1 January 1990 and 31 December 1994 (the last five
years for which incidence data were collected in this dataset).

. stset exit, origin(dx) enter(time mdy(1,1,1990)) failure(status==1 2)
> id(id) scale(365.24) exit(time mdy(12,31,1994))

We can then apply strs in the usual manner to obtain Ederer II estimates,

. strs using popmort if stage==1, breaks(0(1)10) mergeby(_year sex _age) by(sex)

or Hakulinen estimates,

. strs using popmort if stage==1, breaks(0(1)10) mergeby(_year sex _age)
> by(sex) potfu(potfu)

If an individual dies before the start of the period window, the record is marked with
st=0 and is not considered in analyses performed using st commands. Although such
individuals do not contribute to the estimates of observed survival, they do contribute
to the estimation of expected survival using the Hakulinen method.

Hybrid approach

Applying the period approach may be problematic if the follow-up period extends be-
yond the period for which incident cases are accrued. For example, our sample dataset
contains patients diagnosed from 1989 to December 1994 with follow-up until December
1995. For this reason, we censored the follow-up of all individuals on 31 December 1994
in the previous example.

What would we do if we wanted to perform period analysis with a window between
1 January 1991 and 31 December 1995? Using annual intervals, the first conditional
estimate would contain contributions from patients diagnosed 1990–1994, the second
would contain contributions from patients diagnosed 1989–1994, and the third would
contain contributions from patients diagnosed 1988–1993. All conditional estimates con-
tain contributions from six potential years of diagnosis, apart from the first year, which
only contains contributions from five potential years of diagnosis. Brenner and Rachet
(2004) suggested that, in such a situation, the period window should be widened for
the first year (it should be 1 January 1990 to 31 December 1995 so that patients diag-
nosed 1989–1994 will contribute person-time). They called this approach the “hybrid
approach”. The distinctive feature of the hybrid approach is that the date at which
individuals become at risk (the start of the period window) differs according to year of
diagnosis. This is relatively easy to apply in Stata.
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. generate long hybridtime = cond(yydx>1989, dx, mdy(1,1,1991))

. stset exit, origin(dx) enter(time hybridtime) failure(status==1 2)
> id(id) scale(365.24)

. replace potfu = date("31/12/1995","DMY")

. strs using popmort if stage==1, breaks(0(1)10) mergeby(_year sex _age)
> by(sex) potfu(potfu)

We create a new variable, hybridtime, to hold the date at which each individual
becomes at risk. This corresponds to the date of diagnosis for patients diagnosed 1990–
1994 and corresponds to 1 January 1991 for patients diagnosed before 1 January 1990.
A diagram such as the one used in Brenner and Rachet (2004) can assist in defining the
entry dates. We then stset the data with this as the start of the time at risk (using
the enter() option) and call strs in the usual manner.

Table 1 shows 10-year RS estimates (Hakulinen method) for patients diagnosed with
colon carcinoma according to the four different approaches.

Table 1. Ten-year RS (Hakulinen method) for patients diagnosed with localized colon
carcinoma in Finland in 1985–1994 using four different approaches

Approach RSmales RSfemales

Cohort 0.6848 0.7034
Complete 0.7127 0.7488
Period 0.7094 0.7880
Hybrid 0.7415 0.7840

4.7 Example 4: Age-standardized RS estimates

In this section, we will discuss age standardization, although one may standardize on
factors other than age. Age standardization can be used to facilitate comparisons of RS

between different populations, such as patients diagnosed in different calendar periods.
Although RS estimates are automatically adjusted for differences in expected survival
due to differing age distributions, they are not adjusted to account for the possibility
that RS (excess mortality) depends on age.

Hakulinen (1977) suggested that one should consider using age standardization even
when estimating RS for a single population where there is no interest in making com-
parisons (referred to as internal standardization or standardization using an internal
standard). This is traditional direct standardization using an internal standard. We
now know that internal standardization is crucial for minimizing bias when using, for
example, the Ederer II estimator. RS is actually an unbiased estimator of net survival if
all individuals have the same expected survival (see the two expressions in section 3.1).
Such a scenario never occurs in practice, but we also know that the size of the bias
is proportional to the degree of heterogeneity in expected survival. If we estimate RS
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for patients within narrow age groups, as is done when age standardizing, then the
expected survival of these patients will be similar and, therefore, the bias in RS will be
much smaller than if we estimate RS for all patients combined.

Table 2 shows all-age and age-specific estimates of 10-year survival for patients
diagnosed with colon carcinoma in Finland, 1985–1994.

Table 2. Age-specific numbers of patients (ni) and estimates of 10-year RS (RSi) for
patients diagnosed with colon carcinoma in Finland, 1985–1994

age (i) ni RSi wi

0–44 381 0.4458 0.042
45–59 1339 0.4912 0.147
60–74 3699 0.4546 0.407
75+ 3668 0.3871 0.404

All-age 9087 0.4358
Age-standardized 0.4324

If we directly age standardize using the traditional method with an internal stan-
dard, the weights (wi) are simply the proportion of patients in each age group at the
start of follow-up (see table 2, above). The age-standardized 10-year RS is given by∑
i RSiwi/

∑
i wi = 0.4324. Specifying the standstrata() option causes strs to first

produce stratified life tables for each level of the variables specified in standstrata()

and then produce standardized estimates using the weights contained in the variable
specified in iweights.

. use colon, clear

. generate id = _n

. stset exit, origin(dx) failure(status==1 2) id(id) scale(365.24)

. tab agegrp if yydx>1984

. recode agegrp 0=0.041928 1=0.147353 2=0.407065 3=0.403654, generate(standw)

. strs using popmort [iw=standw] if yydx > 1984, breaks(0(1)20)
> mergeby(_year sex _age) standstrata(agegrp) notables

The weights should be specified as proportions. In this example, the crude and in-
ternally age-standardized estimates were similar, although this is not always the case
(Hakulinen 1977). It is possible to use the by() option with standstrata() to pro-
duce, for example, age-standardized estimates for each calendar period. For example,
the following code produces age-standardized estimates for each period, using the age
structure for the latter period as the standard. The variable year8594 is an indicator
for diagnosis during the period 1985–1994 (versus 1975–1984).

. stset exit, origin(dx) f(status==1 2) id(id) scale(365.24)

. recode agegrp 0=0.041928 1=0.147353 2=0.407065 3=0.403654, generate(standw)

. strs using popmort [iw=standw], breaks(0(1)20) mergeby(_year sex _age)
> standstrata(agegrp) by(year8594) notables
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Rather than weighting based on the age distribution at the start, Brenner and Haku-
linen (2004) suggest using weights that change throughout follow-up time. This is
achieved by assigning individual weights to each patient and constructing a weighted
life table (Brenner and Hakulinen 2004). Specifying the brenner option (together with
iweight) causes strs to produce standardized estimates using this alternative method.
With this method, if we use the actual age distribution of the patients as the stan-
dard population, then the age-standardized estimates will, unlike with the traditional
method, be identical to the crude estimates (see table 3).

Table 3. Crude, age-standardized, and age-adjusted (alternative) 10-year RS estimates
obtained in each period for patients with colon carcinoma in Finland, 1975–1994; the
age distribution for 1985–1994 is used as the standard population

10-year RS

Age-standardized Age-adjusted
Period Crude (traditional) (alternative)

1975–1984 0.4035 0.4023 0.3998
1985–1994 0.4358 0.4324 0.4358

The two groups under comparison have a very similar age structure, so there are
only small differences between the different approaches, but this is not always the
case (Brenner and Hakulinen 2004). The same technique can be used with respect
to other factors, such as race or stage, but modeling is generally the method of choice
for comparing survival between populations after adjustment for multiple covariates.
See Pokhrel and Hakulinen (2008, 2009) for an overview of the various approaches for
age standardizing RS and how they should be interpreted.

4.8 Example 5: Estimating crude probabilities of death

Both RS and cause-specific survival estimate the same underlying hypothetical quantity:
net survival—the probability of survival where the specific cancer is the only possible
cause of death. Cause-specific survival estimates it directly whereas RS estimates it by
estimating excess mortality. A 15-year RS of 60%, for example, implies patients have a
60% probability of surviving 15 years or more following diagnosis in the hypothetical
scenario where the cancer of interest is the only possible cause of death. The net
probability of death due to cancer within 15 years is 100− 60 = 40% and is interpreted
under the assumption that patients cannot die of other causes.

Net survival is extremely useful for etiological or public health research, where we
may wish, for example, to compare survival over time or between groups of patients while
correcting for differences in noncancer mortality. Patients, however, do not live in this
hypothetical world and estimates of crude mortality or crude survival may be of greater
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interest.5 That is, the crude probability of dying of cancer within 15 years is the actual
probability of dying in the presence of competing risks and will be lower than the net
probability of dying of cancer. Cronin and Feuer (2000) showed how crude probabilities
of death due to cancer and due to causes other than cancer can be estimated from life
tables. Their approach is implemented by strs using the cuminc option. Lambert et al.
(2010) showed how these quantities can be estimated using models for excess mortality
and then implemented the approach with stpm2cm.

. strs using popmort if age>74, breaks(0(1)10)
> cuminc mergeby(_year sex _age) list(cr_e2 ci_dc ci_do)

failure _d: status == 1 2
analysis time _t: (exit-origin)/365.24

origin: time dx
id: id

No late entry detected - p is estimated using the actuarial method

start end cr_e2 ci_dc ci_do

0 1 0.5994 0.3816 0.0760
1 2 0.5104 0.4584 0.1228
2 3 0.4772 0.4842 0.1626
3 4 0.4527 0.5015 0.1991
4 5 0.4413 0.5086 0.2329

5 6 0.4253 0.5173 0.2640
6 7 0.4162 0.5218 0.2923
7 8 0.4092 0.5246 0.3183
8 9 0.3997 0.5280 0.3418
9 10 0.4004 0.5278 0.3632

In the output above, 1 minus cr_e2 is the net probability of death due to cancer,
while ci_dc and ci_do are the crude probabilities of death (also known as cumulative
incidence) due to cancer and due to other causes, respectively. That is, during a 10-year
follow-up of these patients who were aged 75 or over at diagnosis, we estimate that 53%
will have died of cancer, 36% will have died of causes other than cancer, and 11% will
be alive. In the hypothetical scenario where patients can die only of cancer, we estimate
that 60% of patients will have died of cancer and 40% of patients will not have died of
their cancer within 10 years.

5 Modeling excess mortality

The strs command was specifically designed to facilitate modeling. It produces two
output datasets that can be used for modeling. The mortality analogue of RS is excess
mortality, and it is this quantity that is modeled. The total hazard at the time since
diagnosis, t, for persons diagnosed with cancer (with covariate vector z) is modeled as

5. Note that the term “crude survival” is often used to mean “all-cause survival”, although here we
use the term “crude” as it is used within the theory of competing risks (Tsiatis 2005), and we use
“observed survival” as a synonym for all-cause survival.
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the sum of the expected hazard, λ∗(t; z), and the excess hazard due to a diagnosis of
cancer, ν(t; z). That is,

λ(t; z) = λ∗(t; z) + ν(t; z)

The expected hazard is annotated with an asterisk to indicate that it is estimated
from external data (general-population mortality rates). Some authors prefer to write
the expected hazard as λ∗(t; z1), where z1 is a subvector of z, to indicate that the
expected hazard is generally assumed to depend only on a subset of the covariates
available (typically, age, sex, and period). The expected hazard does not depend, for
example, on tumor-specific covariates, such as histology or stage. For simplicity, we
write that the expected hazard is a function of z, even though it does not vary over all
elements of z.

We partition the follow-up time into bands corresponding to life-table intervals.
These are typically one year in length, although it is possible to use shorter intervals
early in the follow-up, where mortality is often higher and changing rapidly (as in
section 4.4). We also construct a set of indicator variables (one indicator variable for
each interval, excluding the reference interval) and incorporate it into the covariate
matrix. We use x to denote the covariate vector that contains indicator variables for
these bands of follow-up time in addition to the other covariates z. Our primary interest
is in the excess hazard component, ν, which is assumed to be a multiplicative function
of the covariates, written as exp(xβ). The basic RS model is, therefore, written as

λ(x) = λ∗(x) + exp(xβ) (1)

Parameters representing the effect in each follow-up interval are estimated in the same
way as parameters representing the effect of, for example, age, sex, or histology. Im-
plicit in (1) is the assumption that the excess hazards for any two patient subgroups
are proportional over follow-up time. We can, however, incorporate nonproportional
excess hazards by including time-by-covariate interaction terms in the model. The ex-
ponentiated parameter estimates can be interpreted as excess hazard ratios, sometimes
known as relative excess risks (Suissa 1999). An excess hazard ratio of, for example,
1.5 for males compared with females implies that the excess mortality associated with
a diagnosis of cancer is 50% higher for males than females.

5.1 Modeling excess mortality using a full-likelihood approach

Estève et al. (1990) described a method for fitting the model in (1) directly from
individual-level data using a maximum likelihood approach. The likelihood function
is

L =

n∏
i=1

exp

{
−
∫ ti

0

λ(s) ds

}
{λ(ti)}di

where ti is the survival time and di is the failure indicator variable (1 if ti is the time of
death; 0 if the survival time is censored at ti) for each of the i = 1, . . . , n individuals.
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Writing the total hazard as the sum of the expected hazard and the excess hazard,
the log-likelihood function is

l(β) = −
n∑
i=1

∫ ti

0

λ∗(s) ds−
n∑
i=1

∫ ti

0

ν(s) ds+

n∑
i=1

di ln{λ∗(ti) + ν(ti)}

Although the model is specified in continuous time, it is assumed (as with all approaches
described here) that the hazard is constant within prespecified bands of time, and the
excess hazard ν(t) is written as exp(xβ). Fitting the model is simplified if each obser-
vation is split into separate observations for each band of follow-up. The contribution
of the ijth subject band to the total log likelihood is

lij(β) = [dij ln{λ∗(xij) + exp(xijβ)} − yij exp(xijβ)] (2)

where yij is the time spent by subject i in time-band j.

The Stata ml command with the lf method can be used to maximize the log-
likelihood function shown in (2). The likelihood used by the ml command is defined in
esteve.ado, which is part of the strs package and reproduced below.

program define esteve

version 7

args lnf theta

quietly replace `lnf´=-exp(`theta´)*y if $ML_y1==0

quietly replace `lnf´=ln(-ln(p_star)+exp(`theta´))-exp(`theta´)*y if $ML_y1==1

end

The global macro ML y1 contains d, the death indicator.

Example

We fit the model to the colon carcinoma data, restricting the analysis to the first five
years of follow-up. After declaring the data to be survival time (using stset), we call
strs with by(sex year8594 agegrp). This causes these variables to be included in
the output file (individ.dta), which will contain one observation for each individual
for each life-table interval, and it also generates the grouped data (grouped.dta) by
all combinations of sex, year8594, and agegrp. We require λ∗ (the expected mortality
rate) but our popmort.dta file contains p∗, the probability of surviving, so we transform
the probability to a rate (see section 4.3).

. use colon, clear
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. generate id = _n

. quietly stset surv_mm, failure(status==1 2) id(id) scale(12)

. strs using popmort if stage==1, breaks(0(1)10) mergeby(_year sex _age)
> by(sex year8594 agegrp) save(replace) notable noshow

No late entry detected - p is estimated using the actuarial method
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. use individ if end<6, clear
(Survival data containing individual subject-band observations)

. generate rate=-ln(p_star)

. ml model lf esteve (d y rate = i.end sex year8594 i.agegrp)

. ml maximize, eform("EHR") nolog

Number of obs = 23579
Wald chi2(9) = 72.73

Log likelihood = -5969.5775 Prob > chi2 = 0.0000

EHR Std. Err. z P>|z| [95% Conf. Interval]

end
2 .8286045 .0779917 -2.00 0.046 .689015 .9964739
3 .6765733 .0727639 -3.63 0.000 .5479868 .835333
4 .5383155 .069149 -4.82 0.000 .4185008 .6924325
5 .4606403 .0690407 -5.17 0.000 .343387 .617931

sex .9545966 .0737863 -0.60 0.548 .8203999 1.110744
year8594 .734979 .055002 -4.11 0.000 .6347102 .8510879

agegrp
1 .8663227 .135108 -0.92 0.358 .6381604 1.17606
2 1.055003 .1508525 0.37 0.708 .7971545 1.396256
3 1.341785 .2022822 1.95 0.051 .9985251 1.803045

_cons .0844594 .015493 -13.47 0.000 .0589531 .1210012

The estimates are identical to those presented in table I of Dickman et al. (2004).
The variable year8594 is coded as 1 for patients diagnosed in 1985–1994 and 0 for
patients diagnosed in 1975–1984. We see that patients diagnosed in the recent period
are estimated to experience 27% lower excess mortality compared with those diagnosed
in the earlier period. There is evidence that excess mortality decreases with follow-up
time, some evidence of higher excess mortality in the oldest age group, and no evidence
of a difference in excess mortality between males and females.

5.2 Modeling excess mortality using Poisson regression

The RS model (1) assumes piecewise constant hazards, which implies a Poisson process
for the number of deaths in each interval. This implies that the RS model can be fit in
the framework of generalized linear models using a Poisson assumption for the observed
number of deaths. We assume that the number of deaths for observation j, dj , can
be described by a Poisson distribution, dj ∼ Poisson(μj), where μj = λjyj and yj is
person-time at risk for the observation. Equation (1) is then written as

μj
yj

=
d∗j
yj

+ exp(xβ)

which can be written as

ln(μj − d∗j ) = ln(yj) + xβ
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where d∗j is the expected number of deaths (due to causes other than the cancer of inter-
est and estimated from general-population mortality rates). This implies a generalized
linear model with outcome dj , Poisson error structure, link ln(μj−d∗j ), and offset ln(yj).
This is not a standard link function, so it is defined in rs.ado, which is included in the
strs package and can be viewed by typing viewsource rs.ado.

Example: Poisson regression

The example in section 5.1 produced two output data files: individ.dta containing
one observation for each subject band and grouped.dta containing one observation for
each life-table interval. Here we fit the Poisson regression model to the grouped data;
if we fit the model to the data in individ.dta, we would obtain identical estimates
to the full-likelihood approach (section 5.1) because we would be maximizing the same
likelihood using the same data.

. use grouped if end<6, clear
(Collapsed (or grouped) survival data)

. glm d i.end i.sex i.year8594 i.agegrp, fam(pois)
> link(rs d_star) lnoffset(y) eform nolog

Generalized linear models No. of obs = 80
Optimization : ML Residual df = 70

Scale parameter = 1
Deviance = 131.4342128 (1/df) Deviance = 1.877632
Pearson = 130.1530694 (1/df) Pearson = 1.85933

Variance function: V(u) = u [Poisson]
Link function : g(u) = log(u-d*) [Relative survival]

AIC = 6.39959
Log likelihood = -245.9836017 BIC = -175.3077

OIM
d exp(b) Std. Err. z P>|z| [95% Conf. Interval]

end
2 .7984084 .0730515 -2.46 0.014 .6673339 .955228
3 .6230213 .0671961 -4.39 0.000 .5043086 .7696785
4 .4969433 .0645561 -5.38 0.000 .3852391 .6410374
5 .4334347 .065147 -5.56 0.000 .322838 .5819191

2.sex .9564493 .0729823 -0.58 0.560 .8235891 1.110742
1.year8594 .7308044 .0539291 -4.25 0.000 .6323935 .8445296

agegrp
1 .8642841 .1353083 -0.93 0.352 .635911 1.174672
2 1.071568 .1534869 0.48 0.629 .8092774 1.418869
3 1.436319 .2146593 2.42 0.015 1.071613 1.925147

_cons .0838687 .0124017 -16.76 0.000 .0627671 .1120644
ln(y) 1 (exposure)

This model is conceptually identical to the full-likelihood approach applied in the
previous section, and the estimates are very similar. The advantage of fitting the model
in the framework of generalized linear models is that we have access to a rich theoretical
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framework and can use, for example, regression diagnostics. An advantage of fitting the
model to collapsed data is that we can assess goodness of fit by using the deviance or
Pearson’s chi-squared statistic (provided the data are nonsparse). We see that there
is evidence of lack of fit (deviance is 131.4 with 70 degrees of freedom), and further
investigation reveals that an age by follow-up interaction is required (see Dickman et al.
[2004, table II]).

Example: Poisson regression using smoothing splines

We previously assumed the hazard to be piecewise constant (that is, a step function)
over follow-up time, an assumption that is not attractive from a clinical or biological
perspective. We might alternatively specify narrower time bands (for example, monthly)
and model the effect of follow-up using a restricted cubic spline.

. use colon

. generate id = _n

. stset exit, origin(dx) failure(status==1 2) id(id) scale(365.24)

. generate long potfu = date("31/12/1995","DMY")

. strs using popmort if stage==1, breaks(0(0.083333333)5) mergeby(_year sex _age)
> by(sex year8594 agegrp) potfu(potfu) save(replace) notable

. use grouped, clear

. mkspline endb = end, cubic nknots(5)

. glm d endb? i.sex i.year8594 i.agegrp, failure(poisson) link(rs d_star)
> lnoffset(y)

The same approach can be used for any metric variable, for example, age at diag-
nosis. Alternative methods for fitting smooth functions, such as fractional polynomi-
als (Lambert et al. 2005) or B-splines (Giorgi et al. 2003), can also be applied.

As an illustration of assessing the goodness of fit of this model, figure 1 shows
the model-based estimates of RS for each age group for males with localized colon
cancer diagnosed in 1985–1994 as well as corresponding life-table estimates (Hakulinen
approach) with 95% CIs.

. predict xb, xb nooffset // excess risk

. generate r_hat = exp(-exp(xb)*0.083333) // interval-specific relative survival

. bysort sex year8594 agegrp (end) :
> generate rs_hat = exp(sum(log(r_hat))) // cumulative relative survival

. twoway (rcap lo_cr_h hi_cr_h end if end==int(end) & sex==1 & year8594==1)
> (scatter cr_hak end if end==int(end) & sex==1 & year8594==1)
> (line rs_hat end if sex==1 & year8594==1, lw(medthick)),
> by(agegrp, legend(off)) ytitle("Relative survival")
> xtitle("Years from diagnosis") xlabel(0(1)5) ylabel(0.6(.1)1, format(%3.2f))
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Figure 1. Model-based (dotted line) and empirical (with 95% CI) estimates of RS by age
groups for males with localized colon cancer diagnosed in 1985–1994

As is common with cancer survival data, patients aged 75 years or more at diagnosis
have considerably higher mortality during the first year following diagnosis, but once
they have survived the first year, they experience excess mortality more similar to the
other age groups. That is, the excess hazards are nonproportional by age at diagnosis.

5.3 Hakulinen–Tenkanen approach to modeling excess mortality

Grouped survival data can be modeled in the framework of generalized linear models by
assuming the number of patients surviving the interval follows a binomial distribution
with the denominator as the effective number at risk and by using a complementary
log-log link. Hakulinen and Tenkanen (1987) extended this approach to RS, where the
link function is now complementary log-log combined with a division by the expected
survival proportion p∗j . That is,

ln

(
− ln

pj
p∗j

)
= xβ

We note that − ln(pj/p
∗
j ) is the cumulative excess hazard for interval j, so this approach

(as with the two previous approaches) equates the natural logarithm of the excess hazard
with the linear predictor. This link function is not standard, so (as with the Poisson
regression model for excess mortality) the link function is defined in an ado-file (ht.ado)
and the model is fit using the glm command in the usual manner.
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. use grouped

. glm ns i.end i.sex i.year8594 i.agegrp, family(bin n_prime) link(ht p_star)

6 Conclusion

The strs command implements procedures that are commonly used in population-
based cancer epidemiology. It is designed to facilitate modeling, yet its flexibility makes
it useful for purposes other than modeling as well. We used it, for example, to estimate
standardized incidence ratios and to estimate life expectancy. The only original theory
we presented here is the actuarial estimator of net survival. The theory underlying all
other approaches has been presented elsewhere, and we provided appropriate references
throughout this article.
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Hakulinen, T., K. Seppä, and P. C. Lambert. 2011. Choosing the relative survival
method for cancer survival estimation. European Journal of Cancer47: 2202–2210.

Hakulinen, T., and L. Tenkanen. 1987. Regression analyses of relative survival rates.
Applied Statistics 36: 309–317.

Hinchliffe, S. R., and P. C. Lambert. 2013. Extending the flexible parametric survival
model for competing risks. Stata Journal 13: 344–355.

Howlader, N., L. A. G. Ries, A. B. Mariotto, M. E. Reichman, J. Ruhl, and K. A.
Cronin. 2010. Improved estimates of cancer-specific survival rates from population-
based data. Journal of the National Cancer Institute 102: 1584–1598.

Lambert, P. C., P. W. Dickman, and M. J. Rutherford. 2014. Comparison of approaches
to estimating age-standardized net survival. Submitted.

Lambert, P. C., P. W. Dickman, C. L. Weston, and J. R. Thompson. 2010. Estimating
the cure fraction in population-based cancer studies by using finite mixture models.
Journal of the Royal Statistical Society, Series C 59: 35–55.

Lambert, P. C., and P. Royston. 2009. Further development of flexible parametric
models for survival analysis. Stata Journal 9: 265–290.

Lambert, P. C., L. K. Smith, D. R. Jones, and J. L. Botha. 2005. Additive and mul-
tiplicative covariate regression models for relative survival incorporating fractional
polynomials for time-dependent effects. Statistics in Medicine 24: 3871–3885.

Nelson, C. P., P. C. Lambert, I. B. Squire, and D. R. Jones. 2008. Relative survival:
What can cardiovascular disease learn from cancer? European Heart Journal 29:
941–947.
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